模型选择方法:AIC和BIC

推荐看一下参考文献【4】

引入【3】

经常地,对一堆数据进行建模的时候,特别是分类和回归模型,我们有很多的变量可供使用,选择不同的变量组合可以得到不同的模型,例如我们有5个变量,2的5次方,我们将有32个变量组合,可以训练出32个模型。但是哪个模型更加的好呢?目前常用有如下方法:

AIC=-2 ln(L) + 2 k  中文名字:赤池信息量 akaike information criterion

BIC=-2 ln(L) + ln(n)*k 中文名字:贝叶斯信息量 bayesian information criterion

HQ=-2 ln(L) + ln(ln(n))*k  hannan-quinn criterion

L是在该模型下的最大似然,n是数据数量,k是模型的变量个数

三个模型A, B, C,在通过这些规则计算后,我们知道B模型是三个模型中最好的,但是不能保证B这个模型就能够很好地刻画数据,因为很有可能这三个模型都是非常糟糕的,B只是烂苹果中的相对好的苹果而已。

这些规则理论上是比较漂亮的,但是实际在模型选择中应用起来还是有些困难的,我们不可能对所有这些模型进行一一验证AIC, BIC,HQ规则来选择模型,工作量太大。


AIC

赤池信息量准则,即Akaike information criterion、简称AIC,是衡量统计模型拟合优良性的一种标准,是由日本统计学家赤池弘次创立和发展的。赤池信息量准则建立在熵的概念基础上。

AIC越小,模型越好,通常选择AIC最小的模型

在一般的情况下,AIC可以表示为【2】:


AIC=(2k-2L)/n 

它的假设条件是模型的误差服从独立正态分布。

其中:k是所拟合模型中参数的数量,L是对数似然值,n是观测值数目。k小意味着模型简洁,L大意味着模型精确。因此在评价模型是兼顾了简洁性和精确性。

具体到,L=-(n/2)*ln(2*pi)-(n/2)*ln(sse/n)-n/2.其中n为样本量,sse为残差平方和,L主要取决于残差平方和,为负数

(所以还可以写成:AIC = (2k + 2|L|)/n


解释【1】:

在AIC之前,我们需要知道Kullback–Leibler information或 Kullback–Leiblerdistance。对于一批数据,假设存在一个真实的模型f,还有一组可供选择的模型g1、g2、g3…gi,而K-L 距离就是用模型 gi 去估计真实模型 f 过程中损失的信息。可见K-L 距离越小,用模型 gi 估计真实模型 f 损失的信息越少,相应的模型 gi 越好。

然后,问题来了。怎么计算每个模型 gi 和真实模型 f 的距离呢?因为我们不知道真实模型 f,所以没办法直接计算每个模型的K-L距离,但可以通过信息损失函数去估计K-L距离。日本统计学家Akaike发现log似然函数和K-L距离有一定关系,并在1974年提出Akaike information criterion,AIC。通常情况下,AIC定义为:AIC=2k-2ln(L),其中k是模型参数个数,L是似然函数。

-2ln(L)反映模型的拟合情况,当两个模型之间存在较大差异时,差异主要体现在似然函数项-2ln(L),当似然函数差异不显著时,模型参数的惩罚项2k则起作用,随着模型中参数个数增加,2k增大,AIC增大,从而参数个数少的模型是较好的选择。AIC不仅要提高模型拟合度,而且引入了惩罚项,使模型参数尽可能少,有助于降低过拟合的可能性。然后,选一个AIC最小的模型就可以了。

BIC

BIC=-2 ln(L) + ln(n)*k

BIC的惩罚项比AIC的大,考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。

AIC和BIC的原理是不同的,AIC是从预测角度,选择一个好的模型用来预测,BIC是从拟合角度,选择一个对现有数据拟合最好的模型,从贝叶斯因子的解释来讲,就是边际似然最大的那个模型


参考资料

【1】http://www.360doc.com/content/18/0729/23/58010060_774288493.shtml    AIC,一个越小越好的指标

【2】百度百科:赤池信息量准则 AIC

【3】https://blog.csdn.net/xianlingmao/article/details/7891277    模型选择的几种方法:AIC,BIC,HQ准则

【4】https://cosx.org/2015/08/some-basic-ideas-and-methods-of-model-selection   模型选择的一些基本思想和方法

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,699评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,124评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,127评论 0 358
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,342评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,356评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,057评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,654评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,572评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,095评论 1 318
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,205评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,343评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,015评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,704评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,196评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,320评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,690评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,348评论 2 358

推荐阅读更多精彩内容

  • 在学习深度学习时,我们经常会听到AIC, BIC 还有l1, lasso 等regularization 的知识。...
    云时之间阅读 2,366评论 0 5
  • 很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但是以提高模型复杂度为代价的...
    城市中迷途小书童阅读 51,262评论 0 13
  • 此处模型选择我们只考虑模型参数数量,不涉及模型结构的选择。 很多参数估计问题均采用似然函数作为目标函数,当训练数据...
    井底蛙蛙呱呱呱阅读 4,884评论 0 2
  • 一、基本概念 1.随机时序分析的基本概念1)随机变量:简单的随机现象,如某班一天学生出勤人数,是静态的。2)随机过...
    apricoter阅读 6,531评论 0 10
  • 1 概念 ARIMA模型,全称为自回归积分滑动平均模型(Autoregressive Integrated ...
    风逝流沙阅读 43,379评论 1 48