Thomas G. Dietterich 异常检测 主页

Thomas G. Dietterich

Distinguished Professor and Director of Intelligent Systems

School of Electrical Engineering and Computer Science

1148Kelley Engineering Center

Oregon State University

Corvallis, Oregon 97331-5501

E-mail:tgd@cs.orst.eduPhone: +1-541-737-5559 Office: KEC 2067

PGP Public Key

(Last updated June 5, 2015.)

Page Contents:ResearchProspective StudentsPublicationsTalksCVSoftwareStudents and StaffCourse MaterialsBio SketchConferences

Current Research

"If you invent a breakthrough in artificial intelligence, so machines can learn," Mr. Gates responded, "that is worth 10 Microsofts." (Quoted in NY Times, Monday March 3, 2004)

The focus of my research is machine learning (and the associated areas of Data Science and Big Data). How can we make computer systems that adapt and learn from their experience? How can we combine machine learning with other advances in AI to build Integrated Intelligent Systems? How can we combine human knowledge with massive data sets to expand scientific knowledge and build more useful computer applications? My laboratory combines research on machine learning and AI fundamentals with applications to problems in science and engineering.

Scientific Projects

Ecosystem Informatics and Computational Sustainability:Oregon State University is a leader in combining computer science and the ecological sciences to build the new discipline of Ecosystem Informatics. Ecosystem Informatics studies methods for collecting, analyzing, and visualizing data on the structure and function of ecosystems. It is an instance of an important new direction in science: Data Exploration Science (see Jim Gray's2003 KDD talk).

Oregon State is also part of theInstitute for Computational Sustainabilityled by Cornell University. This effort seeks to develop novel computational methods to address problems in ecosystem science and sustainable management of the biosphere.

My group is involved in many Ecosystem Informatics and Computational Sustainability activities:

Machine Learning for Species Distribution.One of the central goals of ecology is to understand and predict the distribution of species (including the bugs that we are studying in the Insect Identification project). Given a data set that records observations of the presence (or absence) of multiple species at multiple locations, we wish to develop models that can predict their presence/absence elsewhere. We are interested not only in static distribution models, but also in process models that capture the temporal and spatial of species distributions (e.g., bird migration, flight times of moths, return of salmon, spread of invasive species, survival of endangered species, etc.). Our species distribution team includes faculty members (Matt Betts, myself, and Weng-Keen Wong), post-docs Rebecca Hutchinson and Selina Chu, and graduate students Arwen Lettkeman and Liping Liu. We collaborate very closely with theCornell Laboratory of Ornithologyand with theDataONE Datanet. In particular, we are studying methods for dealing with the many shortcomings of the citizen science data collected by the Lab of Ornithology in theireBird projectincluding (a) partial detection, (b) wide range of birder expertise, and (c) highly biased spatial distribution of observations.

BirdCast.Another special case of species distribution modeling is understanding bird migration. With the Lab of Ornithology, we are developing methods for reconstructing and predicting bird migration across North America. Our goal is to understand what signals birds use to decide when to migrate and to provide daily forecasts of bird migration by combining eBird reports, weather radar, acoustic monitoring of flight calls, and weather forecasts. The project web site is availablehere.

Approximate Optimization for Bio-Economic Models.Many sustainability applications require solving large spatio-temporal optimization problems under uncertainty. We are collaborating with economistsJo AlbersandClaire Montgomeryon methods for approximate solution of spatio-temporal optimization problems involving land management for wildfire control and counter-measures for controlling invasive species.

Project TAHMO: Deployment, Cleaning, and Analysis of Sensor Network Data.We are part of theProject TAHMOthat seeks to construct and deploy a network of 20,000 hydro-meteorological stations in Africa. We are developing algorithms for sensor placement, data cleaning, recovery from damaged sensors, and analysis of the resulting data. We are building on our previous work with Ethan Dereszynski on dynamic Bayesian network models for sensor data cleaning.

Arthropod Identification.Our current understanding of complex ecosystems is limited by a lack of data. One particularly useful kind of data is population counts of "bugs" (small arthropods that live in soils, lakes, streams, and the ocean). TheBugID projectseeks to develop devices for capturing, imaging, and sorting bugs combined with general image processing/machine learning/pattern recognition tools for counting and classifying them. We hope to transform the ability of scientists to measure the health of forests, streams, and estuaries. More generally, we are interested in developing a wide range of novel instruments for expanding the quality, quantity, and spatio-temporal resolution of ecologically-relevant data. Our research also contributes to computer vision and object recognition more generally.

NIPS 2012 Posner Lecture: Challenges for Machine Learning in Computational Sustainability.

ICML 2011 Tutorial on Machine Learning in Ecology and Ecosystem Management

Intelligent Desktop Assistants. We have been involved in two large efforts to develop intelligent assistants for the computer desktop.

TaskTracer. When you come into work in the morning, you don't want to say to your computer "I want to run Word", but rather, "I want to work on my CS534 homework". In other words, you would like a user interface that was organized around your projects and activities rather than around application programs, files, folders, etc. You would also like all of your information in one place rather than scattered across the local file system, network file systems, web sites, email folders, calendar, contacts, etc. TaskTracer extends the Windows UI to provide exactly this functionality. This research is supported by DAPRA with previous support from Google, Intel, and the DARPA CALO project.OSU News Service story.Project Web Site.

CALO. The goal of theCALOproject was to develop an AI personal assistant that can help you find relevant documents, prepare for meetings, keep track of what is going on during meetings, and autonomously execute tasks such as arranging travel, scheduling meetings, executing administrative workflows (e.g., purchasing and staffing), and so on. Our work on CALO focused on developing methods for integrating multiple, separately-engineered components into a single learning and reasoning system. We also prototyped a novel system that employs programming-by-demonstration to define new learning tasks for CALO to solve autonomously. We are currently editing a book describing the results of the CALO project.

Next Generation Phenomics. An important goal in biology is to reconstruct the tree of life. As part of theProject AVATOLteam, we are developing computer vision and machine learning methods to automatically discover and score phenotype characters (features) from images of biological specimens. These scores can then be combined with other information (e.g., genetic sequences, functional measurements) to reconstruct phylogenetic trees. Phenomic information is particularly valuable for sets of closely-related species (where DNA differences may not reflect functional differences) and for extinct species known only through fossil specimens.

The computer science challenges involve learning to score known characters, which typically include shape, texture, color, and topological features of specimens, from weakly-labeled data and discovering new characters that are shared across some taxonomic groups but not others.

Fundamental Machine Learning and Artificial Intelligence Research

Machine Reading and Deep Reading. In collaboration with researchers at BBN, CMU, University of Washington, ISI, and UMass, we are studying methods for extracting knowledge from text to support inference. Our focus is on learning rules (e.g., Horn clauses) and scripts (e.g., logical hidden Markov models) from noisy and incomplete training data extracted from reading text. Funding provided by the DARPA Machine Reading and DEFT programs.

Anomaly Detection. An important capability for AI systems is to be able to detect when an input situation is unusual. For example, anomaly detection can allow machine learning systems to detect when an input case is very different from the training data and hence could lead to extrapolation and poor performance. Anomaly detection methods are also important for detecting novel failures in sensor networks and novel attacks on computer systems. We are developing a range of algorithms for anomaly detection under the DARPA ADAMS program.

We have also developed a new benchmarking methodology for comparing anomaly detection methods. Benchmark data sets and scripts are available fordownload.

Flexible Latent Variable Modeling. Many problems in machine learning require learning models of hidden ("latent") processes. Such latent variable models can be easily represented using graphical models. However, such models are typically expressed using parametric probability distributions, which limits their ability to adapt to the complexity of the process and the amount of data. Our research seeks to integrate flexible machine learning methods (such as boosted regression trees) into latent process models. Postdoc Rebecca Hutchinson and graduate student Liping Liu are developing an R package that integrates boosted regression trees into certain latent variable models common in species distribution modeling.

Learning Individual Models from Aggregate Data. Most data in ecology (and other fields) records information in aggregated form (e.g., population counts, census figures). Often, we wish to fit models of individual behavior using such aggregated data. One example is the problem of predicting bird migration from eBird counts. Former Postdoc Dan Sheldon has developed a new formalism, the Collective Grahical Model, that directly transforms individual models to aggregate models that can then be easily linked to aggregated data.

Sample-Efficient Algorithms for Solving Spatial Markov Decision Processes. We are developing algorithms for solving MDPs in which the state consists of a landscape of patches, and each patch has its own state. This means that the state space is enormous. At each time step, an action must be specified for each patch, so the action space is also enormous. In these problems, phenomena (such as fires, infections, species spread) propagate spatially, so we cannot treat the patches as independent. Our algorithms seek exact (or bounded approximate) solutions for small problem instances, and satisfactory solutions for real-sized problem instances. Our algorithms optimize both expected (discounted) cumulative reward and also risk-sensitive reward measures. The transition probabilities for these models are specified in the form of an expensive simulator which can be invoked with a given state and action to obtain a sample of the resulting state and the reward. An important goal is to minimize the number of calls to the simulator.

Software Engineering Methods and Tools for Machine Learning Systems. Creating and maintaining a successful deployed machine learning system is still largely an art that requires a Ph.D. The goal of this research is to develop software engineering methods and tools for creating and maintaining deployed machine learning systems.

Reviews, tutorials, and books. I have written several review articles and tutorials on machine learning.

My group meets Mondays 3-4pm in KEC 2057. Each week, one member gives a one-hour presentation of a paper relevant to their work. There are two other reading groups meeting this quarter. I'm participating in the group organized by Alan Fern on the topic of Monte Carlo Tree Search and MDPs. We meet Thursdays 3-4pm KEC 2057. There is also an AI Seminar scheduled from time to time (contact Alan Fern for details).

Information for Prospective Students

If you are seeking a research career in machine learning, data mining, artificial intelligence and related areas, and you have a strong background in mathematics and programming, please read myInformation for Prospective Studentspage.

If you are interested in robotics, I encourage you to visit theRobotics Team Pagesto learn more about our excellent robotics program.

Publications, Curriculum Vita, Software, and Data

Publications

Talks

Curriculum Vita

Downloadable Collection of Error Correcting Codesfor use with the error-correcting output coding technique.

Release 1.0 of MAXQ Hierarchical Reinforcement Learning code.

RSW (Recurrent Sliding Window) Package for WEKAfor sequential supervised learning.

Implementation of the PCBR region detector developed as part of the BugID project.

Implementation of TreeCRF system and supporting materials from our JMLR paper.Java implementation by Brad Block.

STONEFLY9 Image Database.

EPT29 Image Database.

Starcraft Scouting dataset (for UAI 2012 paper)

Professional Service, Journals, and Book Series

I am President of theAssociation for the Advancement of Artificial Intelligence.

I am a member of the Editorial Board for theJournal of Machine Learning Research, which is an electronic (and hardcopy) journal covering all areas of machine learning.

I edit the MIT Press book series onAdaptive Computation and Machine Learning.

I am the moderator for the machine learning (CS.LG) part ofCoRR, which is the computer science sub-part ofarXiv.

I am past President of theInternational Machine Learning Society. I currently serve on the IMLS Board.

Entrepreneurial Activities

I am a co-founder ofStrands(formerly MyStrands; formerly MusicStrands), a recommendation company.

I am a co-founder ofSmart Desktop. Smart Desktop is now part ofDecho, Inc., which is a "cloud computing" effort ofEMC. Decho is commercializing technology developed as part of the TaskTracer system.

I am a co-founder and Chief Scientist ofBigML. The goal of this startup is to develop large scale cloud-based machine learning services.

Current Students and Staff

Andrew Emmott, Graduate Student.

Rebecca Hutchinson, SEES Postdoctoral Fellow (jointly mentored with Matt Betts).

Jesse Hostetler, Graduate Student (jointly advised with Alan Fern).

Jed Irvine, Senior Faculty Research Assistant (Software Engineer).

Michael Lam, Graduate Student (jointly advised with Sinisa Todorovic).

Liping Liu, Graduate Student.

Sean McGregor, Graduate Student.

Michael Slater, Graduate Student (On leave from Faculty Research Assistant).

Majid Alkaee Taleghan, Graduate Student.

Shahed Sorower, Graduate Student.

Pat Sullivan, Assistant and Grants Coordinator.

Tadesse Zemicheal, Graduate Student.

Former Students and Staff

Hussein Almuallim, Oil and Energy Professional, Calgary, Canada.

Eric Altendorf,Google.

Adam Ashenfelter, BigML, Inc., Corvallis, Oregon.

Ghulum Bakiri, President at MicroCenter, Bahrain.

Christian Baumberger. Software Engineer at Zuehlke Group

Xinlong Bao. Google Pittsburgh.

Brian Breck.

Waranun Bunjongsat.

Giuseppe Cerbone. Independent Information Services Professional, Milan, Italy.

Martha Chamberlin.

Hei Chan.

Richard Charon.

Eric Chown, Full Professor, Bowdoin College.

Selina Chu, JPL, Pasadena, CA.

Dan Corpron

Mark Crowley, Assistant Professor, Department of Electrical and Computer Engineering, University of Waterloo.

Diane Damon,Damon Consulting, Portland, OR.

Ethan Dereszynski, Research Scientist, WebTrends, Portland, OR.

Phuoc Do,Vida Lab.

Nicholas FlannAssociate Professor, Utah State University

Greg Foltz.

Dan Forrest.

Tony Fountain, Director of the Cyberinfrastructure Lab for Environmental Observing Systems (CLEOS), UC San Diego.

Ashit Gandhi, Founder and Vice-President,Prism Gem, LLC- The Art of Diamond Coloring.

Colin Gerety, Fort Collins, CO.

Brandon Harvey,Symantec and Linn-Benton Community College.

Arwen Griffioen.

Guohua Hao, Senior Data Scientist at iHeartRadio.

Hermann Hild, President,SMI Cognitive Software GmbH.

Saket Joshi, Member of Technical Staff at Cycorp.

Varad Joshi,Director of Engineering at Elemental Technologies.

Caroline Koff, Hewlett-Packard Corporation, Fort Collins, CO.

Victoria Keiser, Research Programmer, CMU.Masters Thesis (PDF).

Michael Kelm, Research Scientist, Siemens Healthcare.

Eun Bae Kong, Professor, Computer Science, Chungnam National University, South Korea

Bill Langford, Research Associate at RMIT, Melbourne, Australia.

Junyuan Lin, VMWare, Seattle.

Dragos Margineantu, The Boeing Company.

Gonzalo Martinez, Assistant Professor, Autonomous University of Madrid.

Prafulla Mishra, Software Development Manager at eBay.

Avis Ng.

Soumya Ray, Assistant Professor, Case-Western Reserve University.

Angelo Restificar, Principal Machine Learning Engineer, EBay, Seattle.

Ritchey Ruff, Senior SDET, Microsoft.

Dan Sheldon, Assistant Professor, University of Massachusetts, Amherst.

Jianqiang Shen. Research Scientist, PARC.Doctoral dissertation.

Rongkun Shen. Post-doc, Oregon Health and Science University, Portland.

Michael Shindler, Lecturer at the University of Southern California

Shriprakash Sinha. Ph.D. student TU Delft.

Simone Stumpf. Senior Lecturer, City University London.

Tao Sun, Graduate Student at UMass Amherst.

Dan Vega, Senior Software Engineer at Valley Inception, LLC.

Mark Vulfson. Microsoft Corporation.

Kiri Wagstaff, Principle Researcher at JPL.

Xin Wang, Senior Scientist at Inome (Intelius).

Dietrich Wettschereck. Consultant, Cologne, Germany.

Pengcheng Wu.

Michael Wynkoop, Qualcomm.

Qing Yao, College of Informatics and Electronics. Zhejiang Sci-Tech University. Hangzhou, China.

Wei Zhang, The Boeing Company.

Wei Zhang. Senior Software Engineer, Google.Doctoral Dissertation (PDF).

Valentina Zubek, Principal Statistician, Boehringer Ingelheim.

Previous Courses and Courseware

CS519/GEO599: Principles of Ecosystem Informatics, 2004-2005.

CS 534, Spring 2005, Machine Learning.

CS430, Fall 2003, Introduction to Artificial Intelligence

CS539, Fall 2003, Seminar: Probabilistic Relational Models

CS 533, Applied Artificial Intelligence for Engineeers.

CS 539, Winter 2000, Selected Topics in Artificial Intelligence: Probabilistic Agents

CS 430/530, Fall 1999, Artificial Intelligence Programming Techniques.

CS 519, Fall 1996. Research Methods in Computer Science.

CS 450/550, Winter 1996, Introduction to Computer Graphics.

Machine Learning Resources

ML-Newsis an email list operated by the IMLS for conference annoouncements, job positions (including graduate student and postdoc offers), and other items of relevance to the machine learning community. To join, you must have a google account. Log in to google and then go to theML-News main pageand click on "Apply to join group". Please include your affiliation in your join request.

How to be a Graduate Student. A great web page with pointers to lots of good resources for graduate students.

Standard Proofreading Symbolsthat I use when marking corrections on papers.

Computing Research Repository (part of arXiv). I am the curator for machine learning.

Research Index at Penn State. An invaluable resource for finding online articles, citations, etc.

Journal of Machine Learning Research (JMLR).(Free electronic and hardcopy journal.)

Machine Learning. (Expensive hardcopy journal.)

Journal of Artificial Intelligence Research (JAIR).(Free electronic and hardcopy journal.)

The Machine Learning Database Repositoryat UC Irvine.

The Machine Learning Programs Repositoryat UC Irvine.

UC Irvine ML information.

StatLibcontaining data, algorithms, and other information relevant to statistics.

Knowledge Discovery Minecontaining information about knowledge discovery in databases.

NIPS Online Proceedings.

CMU Reinforcement learning group.

Bibliographies on Artificial Intelligence

Computing Research Repository (CoRR)CS Preprint Service and Archive (part of arXiv).

The DBLP Computer Science Bibliography.

Numerical Recipes Homepage.

My Family's Musical Activities

yOya on MySpaceandyOya home page. My son Noah writes songs and plays keyboards for this band.

Jubilate: The Women's Choir of Corvallis. My wife Carol sings in this choir.

Tom Dietterich, tgd@cs.orst.edu

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容