用研中如何用好NPS

之前在可用性测试的分享中,提到了一种完成任务后做的一种问卷调查方法:NPS。仔细研究了NPS后,发现如果不能深刻理解NPS,会造成误解甚至隐患。

可用性测试经典量表(来源知乎)

1、什么是NPS

NPS,净推值。它看似非常简单,基于一个大家再熟悉不过的问题:“你向朋友或同事推荐某公司的可能性有多大?”/“How likely is it that you would recommend [company X] to a friend or colleague?”

以0-11分为评分范围,0代表“根本不可能”,10代表“非常有可能”,让受访者从中用一个数字,并且问受访者给出该评分的理由

NPS

2、如何计算NPS

NPS=推荐者% - 贬损者%

举个例子,比如一份NPS问卷结果:15个人是推荐者(9到10分),50个人是中立者(7到8分),35个人是批评者(0到6分)。那么NPS=15%-35%=-20%,分数是-20。

NPS分数会受到行业影响,一般来说,NPS>0就会被认可为不错,>50就算杰出,>70以上则被认为是一流的公司。

3、NPS的适用场景

NPS是一个相对综合的测量方式,是对产品/服务等宏观概念的测量,也只有这一维度的测量才能跟公司增长相挂钩。

⚠️因此,如果测量对象是某项功能,用NPS是不合适的,这一功能如果重要性高,可能会构成影响产品NPS的重要驱动因素,那如果相较于品牌、体验关键节点等完全不重要,对整体NPS的影响就非常有限,单独测量这样一个功能更是没有意义。

4、NPS指标本身的不足

以下对一些NPS的缺点进行简单分析,并给出使用时可以使用哪些改进的方法。

1)💔11点量表过长,导致不同人对相邻的分数理解不同、造成测量误差。更糟糕的是,NPS的算法任性地指定了6-7分、8-9分是临界分数,让这个问题雪上加霜。

2)💔任性地把0-6分、7-8分、9-10分划分为三类人,并且在计算NPS时直接忽略7-8分者的人数占比,这个做法非常武断,在跨文化研究中经常被诟病。

3)💔NPS本质是一个比例差,这意味着会有信息损失以及更高的误差:

信息损失
NPS得分相同,但是情况完全不同:50%的推荐者和50%的批评者,10%的推荐者和10%的批评者。长期观察NPS的值,分数不变,但是人群占比分数可能完全不同。

更高误差:
本身在大样本下,误差控制不超过±5%,但是两个值相减,误差就会扩大到±10%

5、针对不足的推荐方法

1)❤️同时计算NPS及推荐意愿平均值,并给出两个数值的置信区间,提供一个全景。
这个做法的好处很多:一方面,在NPS很低时,有可能发现平均值还可以,没有那么令人惊悚,比如最近一个项目发现NPS只有1%但是平均值有7分左右; 另一方面,这个做法能直观地让管理层知道NPS的算法会带来更大的误差区间,对日后监测时分数波动会有心理准备。

2) ❤️同时给到每一档人数的分布,未来即使NPS分数不变,也应去看三类人群的占比分布是否有变化。

3)❤️7~8分者在计算公式时会被忽视,但是在随后的推荐/不推荐理由追问题中不要忽略他们。通常对这类用户同时问“为什么愿意推荐”“是什么阻止了更高的推荐意愿”。

6、NPS在实操过程中的复杂性

1)🏠一个分数无法简单衡量用户体验,需要结合场景
用户体验本质是多环节、多场景的。越场景化、具体化,用户主观打分会越准确、越有实操性。衡量用户体验还是必须建立覆盖重点场景和环节的指标体系,而不是只看单一的综合性指标。

2)🏠询问NPS分数的理由,目的是找出关键的满意因素和不满因素,而无法衡量全盘的用户体验。要达成后者,需要通过对各个环节的单独测量。所以,不要期待用推荐/不推荐这道问题,得出各个环节的体验问题。
🌰反例:某公司在“发现”页的NPS调研问卷中,把“广告质量好”作为推荐理由的一个选项。但用户不会因为广告质量好就推荐给其他人使用的。设置这个问题可能是迫于压力衡量发现页的广告体验,但是使用了不合理的衡量方法。

3)🏠拿着NPS分数与行业、竞品对比
不同调研机制之下的结果严格来说是不可比的。调研机制(目标人群定义、抽样方式、样本加权方式、投放时间、投放渠道、问题设问、问卷UI)不同,极大影响了分数。
拿着NPS分数与行业、竞品对比,会产生极大的误解和隐患,除非是所有竞品都使用了一致的调研机制平台,NPS才有参考意义。

所以,在可用性测试中完成任务后对产品做的NPS问卷,因为任务是假设了场景的,更重要的是得到的NPS是一个参考,更深的原因还需深挖。

参考资料:

1、Net Promoter Score Considered Harmful (and What UX Professionals Can Do About It)

2、《作为用研对NPS调研的真心话大吐槽

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,183评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,850评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,766评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,854评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,871评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,457评论 1 311
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,999评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,914评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,465评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,543评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,675评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,354评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,029评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,514评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,616评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,091评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,685评论 2 360

推荐阅读更多精彩内容