GO和Pathway富集分析的背景基因集

功能(GO)或者通路(Pathway)富集分析时,都会涉及到 Background; 做分析时,分析工具会提供一些数据供使用者选择或者使用自定义的gene list。

例如,在RNAseq或Microarray;有时候工具提供的 Background时物种所有的基因,现在也没有同一的标准用来自己构建Background。

# Background 构造方法:

  1. 使用全基因组中所有的基因;部分软件是这样操作的。
  2. Background应该包含可能是阳性结果的所有基因。
  3. 实验中,技术平台能够检测到的基因;(e.g., microarray)

# 两个概念+例子
Background frequency:Background 基因集包含注释到某个GO term的基因数目。
sample frequency:需要分析的gene 集包含注释到某个GO term的基因数目。
一个例子,现有S. cerevisiae(现注释有6442个基因)的10个基因需要做富集分析,如果这个10基因有5个基因注释到了GO term-DNA修复(S. cerevisiae有100个基因注释到DNA修复 );那么现在DNA修复的样本频率(sample frequency)是5/10;背景频率(background frequency)就是100/6442。

例子中,10个基因是确定的;使用全基因组注释的基因是6442;若是检测中只检测到5000个基因,那么Background gene集选用5000,背景频率也会变化(100 个DNA修复相关的基因都被检测到了),在统计检验时P值大小也会变化。除此之外,100 个DNA修复相关的基因也可能不会全部都在检测结果中。

GO term或Pathway 是否在实验结果的差异基因集中富集常使用的统计学检验基于超几何、卡方或二项式分布。基于基因组中基因注释到某个GO term的概率不变,查看差异基因集有多少基因可以注释到同一个GO term, 从而得到P值。

# Background 构造方法讨论

  1. 使用全基因组中所有的基因;部分软件是这样操作的。

    现在还没有明确的证据说明某个基因在某个组织或细胞系中不表达;组织和细胞的状态是动态变化的,基于不同的情况,基因表达模式也是不同的;在某个实验中,部分基因的表达可能会检测不到,但是他们还是背景的一部分。
    使用全基因组中所有的基因,背景频率就会比较小;这种情况下得到的结果,p值也相比会小一些,假阳性也会增多。

  2. Background应该包含可能是阳性结果的所有基因。

    在芯片测序中,特定的芯片也会对某一类的基因具有偏好性;Affymetrix Human Genome U133 Plus 2.0 GeneChip中包含了更多与甲基化相关的芯片。
    有的实验目的是为了研究一定实验条件下某个组织特定生物过程的富集状况。常规的操作是比较实验和对照组的结果,通过差异表达的方法来鉴定组特异性表达的基因。阳性结果的蛋白或基因还是很难去鉴定了。

  3. 实验中,技术平台能够检测到的基因;(e.g., microarray)

    在microarray实验中,我们预先根据想要检测的基因设计了芯片探针,因此所能检测的基因是已知的。但是一部分探针可能由于背景噪音的影响无法检测到信号;这部分基因可以通过查阅先前已发表的的数据进行评估。
    在RNAseq也存在各种问题会影响基因实际表达水平的测定,例如,PCR阶段引物与序列之间的偏好性会引入不确定变化;为了避免技术和检测上带来的问题,人为设定基因表达的count阈值,移除低于阈值的基因或者只是丢弃在所有样本中count都为零的基因。

参考:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容