[Python] 分段函数

遇上了一个很简单的小问题,就是写一个分段函数。分段函数如图1:
图1. 分段函数

一开始写了个简单版本log_norm0,只能逐元素一个一个得进行。不用想,对元素个数多的向量,肯定慢成乌龟。
后来想到使用一个指示函数,来区分分段的两种情况,就得到log_norm1。不过这种情况比较特殊,不是每次都能成功构造的。
最后,查到numpy中有函数piecewise(x, condlist, funclist, *args, **kw),它是专门用来构造分段函数,x是输入,condlist表示分段的条件,funclist就表示对应分段的处理函数。这就得到了log_norm2

# elementwise
def log_norm0(x):
    if x >= 0:
        return np.log(x + 1)
    else:
        return - np.log(- x + 1)

# indicator
def log_norm1(x):
    # ind = np.where(x > 0, 1, 0)
    ind = (x > 0)
    return np.log(x * ind + 1) - np.log(- x * (1.0 - ind) + 1)

# numpy.piecewise()
def log_norm2(x):
    return np.piecewise(x, [x >= 0, x < 0], [lambda x: np.log(1 + x), lambda x: - np.log(1 - x)])

最后,观察一个各个函数的运行时间。

tic = time.time()
for i in range(x.size):
    y[i] = log_norm0(x[i])
toc = time.time()
print('log0: ', toc - tic)

tic = time.time()
y = log_norm1(x)
toc = time.time()
print('log1: ', toc - tic)

tic = time.time()
z = log_norm2(x)
toc = time.time()
print('log2: ', toc - tic)

观察结果,还是使用指示函数的方法最快,不过跟piecewise差别不大。

log0:  33.59282732009888
log1:  0.4863457679748535
log2:  0.5942573547363281

参考资料:

  1. https://blog.csdn.net/shu15121856/article/details/76080060
  2. https://docs.scipy.org/doc/numpy/reference/generated/numpy.piecewise.html

扩展资料(待填坑):
https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.call.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.frompyfunc.html
https://blog.csdn.net/kezunhai/article/details/46127845

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,874评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,102评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,676评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,911评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,937评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,935评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,860评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,660评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,113评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,363评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,506评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,238评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,861评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,486评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,674评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,513评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,426评论 2 352