单例模式

单例模式

保证一个类仅有一个实例,并提供一个访问它的全局访问点。

  1. 单例类只能有一个实例。
  2. 单例类必须自己自己创建自己的唯一实例。
  3. 单例类必须给所有其他对象提供这一实例。

饿汉模式

public class Singleton {
    //private 私有 
    private static Singleton instance = new Singleton();
    //private 私有
    private Singleton(){}
    public static Singleton getInstance(){
        return instance;
    }
}

懒汉式(非线程安全)

public class Singleton {  
      private static Singleton instance;  
      private Singleton (){
      }   
      public static Singleton getInstance() {  
          if (instance == null) {  
              instance = new Singleton();  
          }  
          return instance;  
      }  
 }

懒汉式(线程安全)

public class Singleton {  
      private static Singleton instance;  
      private Singleton (){
      }
      public static synchronized Singleton getInstance() {  
          if (instance == null) {  
              instance = new Singleton();  
          }  
          return instance;  
      }  
 }

双重校验锁(DCL)

public class Singleton {

    /**
     * 注意此处使用的关键字 volatile,
     * 被volatile修饰的变量的值,将不会被本地线程缓存,
     * 所有对该变量的读写都是直接操作共享内存,从而确保多个线程能正确的处理该变量。
     */
    private volatile static Singleton singleton;
    private Singleton() {
    }
    public static Singleton getInstance() {
        if (instance == null) {
            synchronized(Singleton.class) {
                if (instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return singleton;
    }
}

静态内部类

public class Singleton { 
    private Singleton(){
    }
      public static Singleton getInstance(){  
        return SingletonHolder.sInstance;  
    }  
    private static class SingletonHolder {  
        private static final Singleton sInstance = new Singleton();  
    }  
}

使用容器

public class SingletonManager { 
  private static Map<String, Object> objMap = new HashMap<String,Object>();
  private Singleton() { 
  }
  public static void registerService(String key, Objectinstance) {
    if (!objMap.containsKey(key) ) {
      objMap.put(key, instance) ;
    }
  }
  public static ObjectgetService(String key) {
    return objMap.get(key) ;
  }
}

Volatile可以看做是轻量级的 Synchronized,它只保证了共享变量的可见性。在线程 A 修改被 volatile 修饰的共享变量之后,线程 B 能够读取到正确的值。java 在多线程中操作共享变量的过程中,会存在指令重排序与共享变量工作内存缓存的问题。

public class single {
    
    public static  void main (String[] args) {
            
        singleton sin1 = singleton.getSingle();
        singleton sin2 = singleton.getSingle();
        System.out.println(sin1 == sin2);
        
        Singleton2 sin3 = Singleton2.getInstance();
        Singleton2 sin4 = Singleton2.getInstance();
        System.out.println(sin3 == sin4);
        
        }
        
}



//饿汉式。类一加载对象就创建单例对象
class singleton{
    
    private static singleton sin = new singleton();
    
    private singleton() {};
    
    public static singleton getSingle() {
        return sin;
    }   
}


//懒汉式,即延迟加载。单例在第一次调用 getInstance() 方法时才实例化,在类加载时并不自动实例化,在需要的时候再进行加载实例。
class Singleton2 {

    private Singleton2(){}

    private static Singleton2 instance = null;

    public static Singleton2 getInstance(){
        if(instance == null){
            instance = new Singleton2();
        }
        return instance;
    }
}


//多线程处理创建单例是一起的,用排队,避免如果使用懒汉式的方式创建单例对象,那就可能会出现创建多个实例的情况,添加Synchronized实现线程安全
//不过,在多线程中很好的工作而且是线程安全的,但是每次调用 getInstance() 方法都需要进行线程锁定判断,在多线程高并发访问环境中,将会导致系统性能下降。事实上,不仅效率很低,99%情况下不需要线程锁定判断。
class Singleton3 {

    private Singleton3(){}

    private static Singleton3 instance = null;

    public static synchronized Singleton3 getInstance(){
        if(instance == null){
            instance = new Singleton3();
        }
        return instance;
    }
}


//过双重校验锁的方式进行处理。换句话说,利用双重校验锁,第一次检查是否实例已经创建,如果还没创建,再进行同步的方式创建单例对象。
class Singleton4 {

    private Singleton4(){}

    private static Singleton4 instance = null;

    public static Singleton4 getInstance(){
        if(instance == null){
            synchronized(Singleton4.class){
                if(instance == null){
                    instance = new Singleton4();
                }
            }    
        }
        return instance;
    }
    
}


//静态内部类
class Singleton5{
    
    private Singleton5() {}
    
    private static class SingletonHolder{
        private final static Singleton5 instance = new Singleton5();    
    }
    
    public static Singleton5 getInstance() {
        return SingletonHolder.instance;
    }
}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355

推荐阅读更多精彩内容