趣味数学:水池的裂缝在什么位置?

水池的裂缝在什么位置?

一个水池,顶部有一个进水管,底部有一个出水管。如果只打开进水管,50 分钟可以把水池灌满;如果只打开出水管,60 分钟可以把一池水放完。现在水池在中间的某个位置出现了一条与池底平行的裂缝,如果只打开进水管,需要 80 分钟才能放满一池水,而只打开出水管,只需要 46.5 分钟即可放完一池水。

请问:裂缝出现在离池底几分之几高度的地方?


【解析】

列方程解应用题,很关键的一点,就是要找到某个「不变量」,或者某一对「相等量」。

在某些问题中,不变量可能不上一个。例如,在著名的牛吃草问题中,草的原始数量、草的生长速度是两个未知量,同时也是不变量。我们将其中之一作为方程的元,再将另外一个作为列方程的不变量。

在本题中,未知量有两个:裂缝漏水的速度、裂缝的高度。
既然题中问到了裂缝的高度,我们就把这个量作为方程的元,而将漏水的速度作为方程的不变量。
裂缝的高度与裂缝的漏水速度如何关联起来呢?就需要用到比例知识。
设水池高度(深度)与裂缝高度的比例为 1:t

假设没有裂缝,则可以把灌水过程划分为两个阶段:裂缝下方需要 (50 \times t) 分钟,裂缝上方需要 50\times(1-t) 分钟;
同理,放水过程也可以划分为两个阶段:裂缝上方的时间为 60(1-t) 分钟,而裂缝下方的时间为 60t 分钟;


现在我们提一个问题:水池有裂缝,对于哪个阶段有影响?对哪个阶段没有影响?
回答是:对于裂缝下方的速度和时间没有影响;对于裂缝上方的速度和时间有影响;

裂缝上方的灌水速度变慢了;而放水速度变快了;
具体说来,有裂缝情况下的灌水速度 = 无裂缝的灌水速度 - 漏水速度
有裂缝情况下的放水速度 = 无裂缝的放水速度 + 漏水速度
因为漏水速度是一个不变量,所以以下等式成立:
有裂缝情况下的放水速度 - 无裂缝的放水速度 = 无裂缝的灌水速度 - 有裂缝情况下的灌水速度

有裂缝情况下的放水、灌水速度又如何求出呢?
注意到裂缝下方的时间是不变的,所以,有裂缝时裂缝上方的放水时间为 (46.5-60t) 分钟,有裂缝时裂缝上方的灌水时间为 (80-50t) 分钟,


以漏水速度为「不变量」,可得如下方程:

\dfrac{1-t}{46.5-60t}-\dfrac{1}{60} = \dfrac{1}{50} - \dfrac{1-t}{80-50t}


以下进入解方程阶段。

\dfrac{1-t}{46.5-60t}+ \dfrac{1-t}{80-50t}= \dfrac{1}{60} +\dfrac{1}{50}=\dfrac{11}{300}

(1-t)\,(\dfrac{1}{46.5-60t}+ \dfrac{1}{80-50t}) =\dfrac{11}{300}

\dfrac{(1-t)(126.5-110t)}{(46.5-60t)(80-50t)}= \dfrac{11}{300}

\dfrac{(1-t)\times11\times(11.5-10t)} {(46.5-60t)(80-50t)}= \dfrac{11}{300}

等式两边同除以 11, 化简:

\dfrac{(1-t)(11.5-10t)} {(46.5-60t)(80-50t)}= \dfrac{1}{300}

300(1-t)(11.5-10t)=(46.5-60t)(80-50t)

300(11.5-21.5t+10t^2)=(46.5-60t)(80-50t)

1150\times3-2150\times3\times t+ 3000t^2=465\times8-465\times5t-4800t+3000t^2

等号的左右两边都有 300\,t^2,所以,这是一个「假二次方程」,显然可以化为一次方程:

1150\times3-2150\times3\times t=465\times8-465\times5t-4800t

1150-2150 t=155\times8-155\times5t-1600t

最终解得:t=\dfrac{2}{5}

裂缝离池底的距离相当于水池深度的 \dfrac{2}{5} .


【提炼与提高】

这是一个优秀的竞赛题。既考思想方法,又考计算能力;既考验智商,又考验情商。
找到某个「不变量」,或者某一对「相等量」。 这是一个基本原则,对所有方程类应用题都适用。就本题而言,在找到不变量之后,还需要熟悉比例的用法。
解方程的过程中,会出现一个二次项,六、七年级还没有学过二次方程的解法,部分学生可能会被 “吓住”,到此止步。
其实,如果胆子够大(见识较多),往下走一步就发现:这是一个假的二次方程,应用等式性质一,可以迅速地化简成一个一次方程。
后面的计算较为复杂,如果采用标准流程(先去括号,合并同类项,再移项),计算量会相当大。本文的解法,用了一些小的技巧,简化计算,读者可以自行体会。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容