深度学习调参技巧

从粗到细

实践中,一般先进行初步范围搜索,然后根据好结果出现的地方,再缩小范围进行更精细的搜索。

  1. 先参考相关论文,以论文中给出的参数作为初始参数。
  2. 如果找不到参考,那么只能自己尝试了。可以先从比较重要,对实验结果影响比较大的参数开始,同时固定其他参数,得到一个差不多的结果以后,在这个结果的基础上,再调其他参数。例如学习率一般就比正则值,学习率设置的不合适,不仅结果可能变差,模型甚至会无法收敛。
  3. 如果实在找不到一组参数,可以让模型收敛。那么就需要检查,是不是其他地方出了问题,例如模型实现,数据等等。

提高速度

调参只是为了寻找合适的参数,而不是产出最终模型。一般在小数据集上合适的参数,在大数据集上效果也不会太差。因此可以尝试对数据进行精简,以提高速度,在有限的时间内可以尝试更多参数。

  • 对训练数据进行采样。例如原来100W条数据,先采样成1W,进行实验看看。
  • 减少训练类别。例如手写数字识别任务,原来是10个类别,那么我们可以先在2个类别上训练,看看结果如何。

超参数范围

可以在对数尺度上进行超参数搜索。比较典型的是学习率和正则化项,我们可以从诸如0.001 0.01 0.1 1 10,以10为阶数进行尝试。因为他们对训练的影响是相乘的效果。

经验参数

  • learning rate: 1 0.1 0.01 0.001, 一般从1开始尝试。很少见learning rate大于10的。学习率一般要随着训练进行衰减。衰减系数一般是0.5。 衰减时机,可以是验证集准确率不再上升时,或固定训练多少个周期以后。

    不过更建议使用自适应梯度的办法,例如adam,adadelta,rmsprop等,这些一般使用相关论文提供的默认值即可,可以避免再费劲调节学习率。

  • 网络层数: 先从1层开始。

  • 每层结点数: 16 32 128,超过1000的情况比较少见。超过1W的从来没有见过。

  • batch size: 128上下开始。batch size值增加,的确能提高训练速度。但是有可能收敛结果变差。如果显存大小允许,可以考虑从一个比较大的值开始尝试。因为batch size太大,一般不会对结果有太大的影响,而batch size太小的话,结果有可能很差。

  • clip c(梯度裁剪): 限制最大梯度,其实是value = sqrt(w12+w22….),如果value超过了阈值,就算一个衰减系系数,让value的值等于阈值: 5,10,15

  • dropout: 0.5

  • 正负样本比例: 这个是非常忽视,但是在很多分类问题上,又非常重要的参数。往往习惯使用训练数据中默认的正负类别比例,当训练数据非常不平衡的时候,模型很有可能会偏向数目较大的类别,从而影响最终训练结果。除了尝试训练数据默认的正负类别比例之外,可以对数目较小的样本做过采样,例如进行复制。提高他们的比例,看看效果如何,这个对多分类问题同样适用。

    在使用mini-batch方法进行训练的时候,尽量让一个batch内,各类别的比例平衡。

自动调参

人工一直盯着实验,毕竟太累。自动调参当前也有不少研究。

  • Gird Search. 这个是最常见的。具体说,就是每种参数确定好几个要尝试的值,然后像一个网格一样,把所有参数值的组合遍历一下。优点是实现简单暴力,如果能全部遍历的话,结果比较可靠。缺点是太费时间了,特别像神经网络,一般尝试不了太多的参数组合。

总结

  • 合理性检查,确定模型,数据和其他地方没有问题。
  • 训练时跟踪损失函数值,训练集和验证集准确率。
  • 使用Random Search来搜索最优超参数,分阶段从粗(较大超参数范围训练较少周期)到细(较小超参数范围训练较长周期)进行搜索。

参考资料

https://zhuanlan.zhihu.com/p/20767428

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349