**一、用到的工具**
pycharm
postman
flask框架
yaml文件
gunicorn
**二、过程**
1.最开始的时候准备好文件,拷贝到自己的电脑里。
decu文件,下面有一个huojia和一个didui。
在huojia和didui中分别还有五个小文件,
格式是decu_anchors.txt,decu_classes.txt,,cfg , .h5, .weight。
2.分析得到的yolo.py里面的程序,解析每一个变量的数据是什么。
3.编写最基本的flask框架。
```
from flask import Flask, request, Response
app = Flask(__name__)
@app.route('/', methods=["GET", "POST"])
def predict():
params = json.loads(request.get_data())
paths = params['data']
return paths
if __name__ == '__main__':
app.run(processes=1, threaded=True)
```
这样简单的框架就出来了,params返回数据,并且取数据中的“data”,也就是图片网址。
4.修改yolo。
主要是后面for循环,取出坐标值。
注意,prob这个值小数点后数值太多,如果不进行修改,那么会报错。
所以写成这个格式
```
"prob": float('%.7f' % score)
```
最后返回的整理一下,就变成
```
result = {"status": {"code": 200,"msg": "OK"},"head": {"method": "/predict","service": "xuehua_service","time": str(end_run - start_run)},"body": {"predictions": predictions_list}}
return result
```
这样最后的yolo.py,在数值部分就修改差不多了。
5.文件的调用。
我们这次在flask框架,调用yolo.py中的YOLO这个类。
所以我们在xuehua_flask.py中,就写
```
from keras_yolo.yolo import YOLO
```
刚开始将yolo_huojia = YOLO()写在了def函数里面,会发现运行的很慢。
所以,我们将这个写在外边。
也就是
```
app = Flask(__name__)
yolo_huojia = YOLO()
yolo_didui = YOLO_DIDUI()
@app.route('/', methods=["GET", "POST"])
def predict():
```
这样。
6.gunicorn的使用。
我们先运用了一个虚拟环境tensorflow,然后在terminal中调用虚拟环境。
```
source activate tensorflow # 启动虚拟环境
gunicorn -c conf/gunicorn.py xuehua_flask:app # 运行程序
```
7.yolo代码
```
# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""
import colorsys
from timeit import default_timer as timer
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw
from keras_yolo.yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from keras_yolo.yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model
from io import BytesIO
import requests
import time
import yaml
class YOLO(object):
curPath = os.path.dirname(os.path.realpath(__file__))
yamlpath = os.path.join(curPath, "../conf/params.yaml")
f = open(yamlpath, 'r', encoding='utf-8')
cfg = f.read()
# print(cfg)
d = yaml.load(cfg, Loader=yaml.FullLoader)
_defaults = {
"model_path": d.get("model_path"),
"anchors_path": d.get("anchors_path"),
"classes_path": d.get("classes_path"),
"score" : int(d.get("score")),
"iou" : float(d.get("iou")),
"model_image_size" : eval(d.get("model_image_size")),
"gpu_num" : int(d.get("gpu_num"))
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
def __init__(self, **kwargs):
self.__dict__.update(self._defaults) # set up default values
self.__dict__.update(kwargs) # and update with user overrides
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
def detect_image(self, paths):
predictions_list = []
t = time.time()
start_run = int(round(t*1000))
classes = []
for path in paths:
bytes_io_obj = BytesIO()
bytes_io_obj.write(requests.get(path).content)
image = Image.open(bytes_io_obj)
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
# K.learning_phase(): 0
})
for i, c in reversed(list(enumerate(out_classes))):
box = out_boxes[i]
score = out_scores[i]
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
classes.append({"prob": float('%.7f' % score), "cat": str(c), "bbox": {"ymax": int(bottom), "xmax": int(right), "ymin": int(top), "xmin":int(left) }})
predict_dict = {"classes":classes, "uri":path}
predictions_list.append(predict_dict)
t = time.time()
end_run = int(round(t * 1000))
result = {"status": {"code": 200,"msg": "OK"},"head": {"method": "/predict","service": "xuehua_service","time": str(end_run - start_run)},"body": {"predictions": predictions_list}}
return result
def close_session(self):
self.sess.close()
```
8.flask框架代码
```
from flask import Flask, request, Response
from keras_yolo.yolo import YOLO
from keras_yolo.yolo_didui import YOLO_DIDUI
import json
app = Flask(__name__)
yolo_huojia = YOLO()
yolo_didui = YOLO_DIDUI()
@app.route('/', methods=["GET", "POST"])
def predict():
b = ''
global yolo_huojia, yolo_didui
params = json.loads(request.get_data())
paths = params['data']
model_type = params['model_type']
if 0 == model_type:
b = yolo_huojia.detect_image(paths=paths)
if 1 == model_type:
b = yolo_didui.detect_image(paths=paths)
return Response(json.dumps(b), mimetype='application/json')
if __name__ == '__main__':
app.run(processes=1, threaded=True)
```