09.正则表达式re-1.正则表达式

1、正则表达式概述

正则表达式(英语:Regular Expression,在代码中常简写为regex、regexp或RE),是计算机科学的一个概念。
正则表达式使用单个字符串来描述、匹配一系列匹配某个句法规则的字符串。
在很多文本编辑器里,正则表达式通常被用来检索、替换那些匹配某个模式的文本。

2、re模块

2.1re 模块

使 Python语言拥有全部的正则表达式功能。
re 模块提供了一些函数,这些函数使用一个模式字符串做为它们的第一个参数,用于正则表达式匹配和替换。

2.2re模块的使用

  • re.match 函数

re.match 尝试从字符串的起始位置匹配一个模式,若字符串起始位置匹配正则表达式,则match方法返回匹配对象(Match Object),如果不是起始位置匹配成功的话,match()就返回none(注意不是“空字符串”)。

  • 语法:

re.match(pattern, string, flags=0)

  • 参数:
pattern – 匹配的正则表达式 

string – 要匹配的字符串。 

flags – 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。

匹配对象Macth Object具有group方法,我们可以使用group(num) 或 groups() 匹配对象函数来获取匹配表达式。

group(num=0) 
匹配的整个表达式的字符串,group() 可以一次输入多个组号,在这种情况下它将返回一个包含那些组所对应值的元组。 

groups() 
返回一个包含所有小组字符串的元组,从 1 到 所含的小组号。
示例1:

# 导入re模块
import re

# 使用match方法进行匹配操作
result = re.match(正则表达式,要匹配的字符串)

# 如果上一步匹配到数据的话,可以使用group方法来提取数据
result.group()
示例2:

import re

ret = re.match("taobao","taobao.com")
print(ret)
print(ret.group())

运行结果:

<_sre.SRE_Match object; span=(0, 6), match='taobao'>
taobao

3、表示字符

正则表达式的单字符匹配:

字体 功能
. 匹配任意一个字符(除了\n)
[] 匹配[]中列举的字符
\d 匹配数字,即0-9
\D 匹配非数字,即不是数字
\s 匹配空白,即 空格,tab键
\S 匹配非空白
\w ==匹配包括下划线的任何单词字符。类似但不等价于“[A-Za-z0-9_]”,这里的"单词"字符使用Unicode字符集。==
\W 匹配非单词字符

匹配中文字符的正则表达式: [\u4e00-\u9fa5]

  • 示例1:‘.’

匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。

ret = re.match('.','a')
print(ret.group())

ret = re.match('.','A')
print(ret.group())

ret = re.match('.',' ')
print(ret.group())

ret = re.match('.','\nab')
print(ret.group())     错误

ret = re.match('..','\rab')
print(ret.group())

ret = re.match('..','\tab')
print(ret.group())

ret = re.match('.','好好学习')
print(ret.group())

ret = re.match('....','好好学习')
print(ret.group())
  • 示例2:’[ ]‘

用来表示一组字符,单独列出:[amk] 匹配 ‘a’,’m’或’k’

ret = re.match('[Hh]','hello')
print(ret.group())

ret = re.match('[Hh]','Hello')
print(ret.group())

ret = re.match('[A-Z]','Hello')
print(ret.group())

ret = re.match('[0-9a-z]','00')
print(ret.group())

ret = re.match('[0-9a-z]','aa')
print(ret.group())

ret = re.match('[\u4e00-\u9fa5]*','陈佳睿')
print(ret)
print(ret.group())
  • 示例3:’\d, \D, \s, \S‘

\d – 匹配一个数字字符。等价于 [0-9]。

\D –匹配一个非数字字符。等价于 [^0-9]。

\s –匹配任何空白字符,包括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。

\S –匹配任何非空白字符。等价于 [^ \f\n\r\t\v]。

ret = re.match('小米\d','小米6')
print(ret.group())

ret = re.match('小\D\d','小米6')
print(ret.group())

ret = re.match('\s',' 小米')
print(ret)

ret = re.match('\s','\nab')
print(ret)

ret = re.match('\S','小米')
print(ret)

ret = re.match('\S','0123')
print(ret)

ret = re.match('\S\S\S','x米6')
print(ret)


运行结果:
小米6
小米6
<_sre.SRE_Match object; span=(0, 1), match=' '>
<_sre.SRE_Match object; span=(0, 1), match='\n'>
<_sre.SRE_Match object; span=(0, 1), match='小'>
<_sre.SRE_Match object; span=(0, 1), match='0'>
<_sre.SRE_Match object; span=(0, 3), match='x米6'>
  • 示例4:’\w, \W‘

\w ==匹配包括下划线的任何单词字符。类似但不等价于“[A-Za-z0-9_]”,这里的"单词"字符使用Unicode字符集。==。

\W 匹配任何非单词字符。等价于 ‘[^A-Za-z0-9_]’。

ret = re.match('\w','hello')
print(ret)

ret = re.match('\w\w','_hello')
print(ret)

ret = re.match('\w','陈')
print(ret)

ret = re.match('\W\W\w','。.Hello')
print(ret)

ret = re.match('\W','陈hello')
print(ret)  #None

ret = re.match('\W','陈hello',re.ASCII) #匹配各个国家文字
print(ret)  #<_sre.SRE_Match object; span=(0, 1), match='陈'>\

ret = re.match('[\u4e00-\u9fa5]','哈hello')
print(ret)

运行结果:
<_sre.SRE_Match object; span=(0, 1), match='h'>
<_sre.SRE_Match object; span=(0, 2), match='_h'>
<_sre.SRE_Match object; span=(0, 1), match='陈'>
<_sre.SRE_Match object; span=(0, 3), match='。.H'>
None
<_sre.SRE_Match object; span=(0, 1), match='陈'>
<_sre.SRE_Match object; span=(0, 1), match='哈'>

4、原始字符串

>>> mm = "c:\\a\\b\\c"
>>> mm
'c:\\a\\b\\c'
>>> print(mm)
c:\a\b\c
>>> print(mm)
c:\a\b\c
>>> re.match("c:\\\\",mm).group()
'c:\\'
>>> ret = re.match("c:\\\\",mm).group()
>>> print(ret)
c:\
>>> ret = re.match("c:\\\\a",mm).group()
>>> print(ret)
c:\a
>>> ret = re.match(r"c:\\a",mm).group()
>>> print(ret)
c:\a
>>> ret = re.match(r"c:\a",mm).group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

python中字符串前面加上 r 表示原生字符串

与大多数编程语言相同,正则表达式里使用”\”作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符”\”,那么使用编程语言表示的正则表达式里将需要4个反斜杠”\”:前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。

Python里的原生字符串很好地解决了这个问题,有了原始字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

>>> ret = re.match(r"c:\\a",mm).group()
>>> print(ret)
c:\a

5、表示数量

匹配多个字符的相关格式

字符 功能
* 匹配前一个字符出现0次或者无限次,即可有可无
+ 匹配前一个字符出现1次或者无限次,即至少有1次
? 匹配前一个字符出现1次或者0次,即要么有1次,要么没有
{m} 匹配前一个字符出现m次
{m,} 匹配前一个字符至少出现m次
{m,n} 匹配前一个字符出现从m到n次

6、表示边界

字符 功能
^ 匹配字符串开头
$ 匹配字符串结尾
\b 匹配一个单词的边界
\B 匹配非单词边界
  • 示例1:$

需求:匹配163.com的邮箱地址

import re

# 正确的地址
ret = re.match("[\w]{4,20}@163\.com", "xiaoWang@163.com")
ret.group()

# 不正确的地址
ret = re.match("[\w]{4,20}@163\.com", "xiaoWang@163.comheihei")
ret.group()

# 通过$来确定末尾
ret = re.match("[\w]{4,20}@163\.com$", "xiaoWang@163.comheihei")
ret.group()
  • 示例2: \b
>>> re.match(r".*\bver\b", "ho ver abc").group()
'ho ver'

>>> re.match(r".*\bver\b", "ho verabc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

>>> re.match(r".*\bver\b", "hover abc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'
  • 示例3:\B
>>> re.match(r".*\Bver\B", "hoverabc").group()
'hover'

>>> re.match(r".*\Bver\B", "ho verabc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

>>> re.match(r".*\Bver\B", "hover abc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

>>> re.match(r".*\Bver\B", "ho ver abc").group()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 'group'

7、匹配分组

字符 功能
匹配左右任意一个表达式
(ab) 将括号中字符作为一个分组
\num 引用分组num匹配到的字符串
(?P<name>) 分别起组名
(?P=name) 引用别名为name分组匹配到字符串
  • 示例1:|

需求:匹配出0-100之间的数字

import re

ret = re.match("[1-9]?\d","8")
print(ret)

ret = re.match("[1-9]?\d","78")
print(ret)

# 不能正常匹配到的情况
ret = re.match("[1-9]?\d","08")
print(ret)

# 修正之后的
ret = re.match("[1-9]?\d$","8")
print(ret)

# 添加|
ret = re.match("[1-9]?\d$|100","8")
print(ret)

ret = re.match("[1-9]?\d$|100","78")
print(ret)

ret = re.match("[1-9]?\d$|100","8")
print(ret)

ret = re.match("[1-9]?\d$|100","100")
print(ret)

运行结果:
<_sre.SRE_Match object; span=(0, 1), match='8'>
<_sre.SRE_Match object; span=(0, 2), match='78'>
<_sre.SRE_Match object; span=(0, 1), match='0'>
<_sre.SRE_Match object; span=(0, 1), match='8'>
<_sre.SRE_Match object; span=(0, 1), match='8'>
<_sre.SRE_Match object; span=(0, 2), match='78'>
<_sre.SRE_Match object; span=(0, 1), match='8'>
<_sre.SRE_Match object; span=(0, 3), match='100'>
  • 示例2:( )

需求:匹配出163、126、qq邮箱之间的数字

import re

ret = re.match("\w{4,20}@163\.com", "test@163.com")
ret.group()

ret = re.match("\w{4,20}@(163|126|qq)\.com", "test@126.com")
ret.group()

ret = re.match("\w{4,20}@(163|126|qq)\.com", "test@qq.com")
ret.group()

ret = re.match("\w{4,20}@(163|126|qq)\.com", "test@gmail.com")
ret.group()
>>> ret = re.match("([^-]*)-(\d+)","010-12345678")
>>> ret.group()
'010-12345678'
>>> ret.group(1)
'010'
>>> ret.group(2)
'12345678'
  • 示例3:\

需求:匹配出<html>hh</html>

import re

# 能够完成对正确的字符串的匹配
ret = re.match("<[a-zA-Z]*>\w*</[a-zA-Z]*>", "<html>hh</html>")
ret.group()

# 如果遇到非正常的html格式字符串,匹配出错
ret = re.match("<[a-zA-Z]*>\w*</[a-zA-Z]*>", "<html>hh</htmlbalabala>")
ret.group()

# 正确的理解思路:如果在第一对<>中是什么,按理说在后面的那对<>中就应该是什么

# 通过引用分组中匹配到的数据即可,但是要注意是元字符串,即类似 r""这种格式
ret = re.match(r"<([a-zA-Z]*)>\w*</\1>", "<html>hh</html>")
ret.group()

# 因为2对<>中的数据不一致,所以没有匹配出来
ret = re.match(r"<([a-zA-Z]*)>\w*</\1>", "<html>hh</htmlbalabala>")
ret.group()
  • 示例4:\number

需求:匹配出<html><h1>www.taobao.com</h1></html>

import re

ret = re.match(r"<(\w*)><(\w*)>.*</\2></\1>", "<html><h1>www.taobao.com</h1></html>")
ret.group()

ret = re.match(r"<(\w*)><(\w*)>.*</\2></\1>", "<html><h1>www.taobao.com</h2></html>")
ret.group()
  • 示例5:(?P<name>) (?P=name)

需求:匹配出<html><h1>www.taobao.com</h1></html>

import re

ret = re.match(r"<(?P<name1>\w*)><(?P<name2>\w*)>.*</(?P=name2)></(?P=name1)>", "<html><h1>www.taobao.com</h1></html>")
ret.group()

ret = re.match(r"<(?P<name1>\w*)><(?P<name2>\w*)>.*</(?P=name2)></(?P=name1)>", "<html><h1>www.taobao.com</h2></html>")
ret.group()

(?P<name>)和(?P=name)中的字母P大写

8、re模块的高级用法

8.1search

需求:匹配出文章阅读的次数
import re

ret = re.search(r"\d+", "阅读次数为 9999")
print(ret.group())

9999

8.2findall

需求:统计出python、c、c++相应文章阅读的次数
import re

ret = re.findall(r"\d+", "python = 9999, c = 7890, c++ = 12345")
print(ret)

['9999', '7890', '12345']

8.3sub 将匹配到的数据进行替换

需求:将匹配到的阅读次数加1
方法1:
import re

ret = re.sub(r"\d+", '998', "python = 997")
print(ret)

python = 998





方法2:
import re

def add(temp):
    strNum = temp.group()
    num = int(strNum) + 1
    return str(num)

ret = re.sub(r"\d+", add, "python = 997 java=100")
print(ret)

ret = re.sub(r"\d+", add, "python = 99")
print(ret)


python = 998 java=101
python = 100
从下面的字符串中取出文本
<div>
        <p>岗位职责:</p>
<p>完成推荐算法、数据统计、接口、后台等服务器端相关工作</p>
<p><br></p>
<p>必备要求:</p>


re.sub(r'</?\w*>|\n|\s','',s)

8.4split

  • 根据匹配进行切割字符串,并返回一个列表
需求:切割字符串“info:xiaoZhang 33 shandong”


import re

ret = re.split(r':| ','info:xiaoZhang 33 shandong')
print(ret)


['info', 'xiaoZhang', '33', 'shandong']

9、贪婪和非贪婪

Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;
非贪婪则相反,总是尝试匹配尽可能少的字符。
在"*","?","+","{m,n}"后面加上?,使贪婪变成非贪婪。

s="This is a number 234-235-22-423"

ret = re.match(".+(\d+-\d+-\d+-\d+)",s)
print(ret.group())

This is a number 234-235-22-423

ret = re.match(".+?(\d+-\d+-\d+-\d+?)",s)
print(ret.group())

This is a number 234-235-22-4

正则表达式模式中使用到通配字,那它在从左到右的顺序求值时,会尽量“抓取”满足匹配最长字符串,在我们上面的例子里面,“.+”会从字符串的启始处抓取满足模式的最长字符,其中包括我们想得到的第一个整型字段的中的大部分,“\d+”只需一位字符就可以匹配,所以它匹配了数字“4”,而“.+”则匹配了从字符串起始到这个第一位数字4之前的所有字符。
解决方式:非贪婪操作符“?”,这个操作符可以用在"*","+","?"的后面,要求正则匹配的越少越好。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容