图像处理-补充

  1. 图片加载、 显示和保存
    img = Image.open('01.jpg')
    imgGrey = img.convert('L')
    img.show()
    imgGrey.show()

  2. 图片宽、高、通道模式、平均值获取
    img = Image.open('01.jpg')
    width, height = img.size
    channel_mode = img.mode

mean_value = np.mean(img)

print(width)
print(height)
print(channel_mode)
print(mean_value)

  1. 创建指定大小,指定通道类型的空图像
    width = 200
    height = 100
    img_white = Image.new('RGB', (width,height), (255,255,255))
    img_black = Image.new('RGB', (width,height), (0,0,0))
    img_L = Image.new('L', (width, height), (255))
    img_white.show()
    img_black.show()
    img_L.show()

  2. 访问和操作图像像素
    img = Image.open('01.jpg')
    width, height = img.size

获取指定坐标位置像素值

pixel_value = img.getpixel((width/2, height/2))
print(pixel_value)

或者使用load方法

pim = img.load()
pixel_value1 = pim[width/2, height/2]
print(pixel_value1)

设置指定坐标位置像素的值

pim[width/2, height/2] = (0, 0, 0)

或使用putpixel方法

img.putpixel((w//2, h//2), (255,255,255))

设置指定区域像素的值

for w in range(int(width/2) - 40, int(width/2) + 40):
for h in range(int(height/2) - 20, int(height/2) + 20):
pim[w, h] = (255, 0, 0)
# img.putpixel((w, h), (255,255,255))
img.show()

  1. 图像通道分离和合并

通道分离

R, G, B = img.split()
R.show()

通道合并

img_RGB = Image.merge('RGB', (R, G, B))
img_BGR = Image.merge('RGB', (B, G, R))
img_RGB.show()
img_BGR.show()

  1. 在图像上输出文字

Created by 牧野 CSDN

from PIL import Image, ImageDraw, ImageFont
img = Image.open('01.jpg')

创建Draw对象:

draw = ImageDraw.Draw(img)

字体颜色

fillColor = (255, 0, 0)
text = 'print text on PIL Image'
position = (200,100)
draw.text(position, text, fill=fillColor)
img.show()

  1. 图像缩放

from PIL import Image
img = Image.open('01.jpg')
width, height = img.size
img_NEARESET = img.resize((width//2, height//2)) # 缩放默认模式是NEARESET(最近邻插值)
img_BILINEAR = img.resize((width//2, height//2), Image.BILINEAR) # BILINEAR 2x2区域的双线性插值
img_BICUBIC = img.resize((width//2, height//2), Image.BICUBIC) # BICUBIC 4x4区域的双三次插值
img_ANTIALIAS = img.resize((width//2, height//2), Image.ANTIALIAS) # ANTIALIAS 高质量下采样滤波

  1. 图像遍历操作

Created by 牧野 CSDN

from PIL import Image
img = Image.open('01.jpg').convert('L')
width, height = img.size
pim = img.load()
for w in range(width):
for h in range(height):
if pim[w, h] > 100:
img.putpixel((w, h), 255)
# pim[w, h] = 255
else:
img.putpixel((w, h), 0)
# pim[w, h] = 0
img.show()

  1. 图像阈值分割、 二值化

Created by 牧野 CSDN

from PIL import Image
img = Image.open('01.jpg').convert('L')
width, height = img.size
threshold = 125
for w in range(width):
for h in range(height):
if img.getpixel((w, h)) > threshold:
img.putpixel((w, h), 255)
else:
img.putpixel((w, h), 0)

img.save('binary.jpg')

  1. 图像裁剪
    from PIL import Image
    img = Image.open('01.jpg')
    width, height = img.size

前两个坐标点是左上角坐标

后两个坐标点是右下角坐标

width在前, height在后

box = (100, 100, 550, 350)
region = img.crop(box)
region.save('crop.jpg')

  1. 图像边界扩展

Created by 牧野 CSDN

边界扩展

from PIL import Image
img = Image.open('test.png')
width, height = img.size
channel_mode = img.mode
img_makeBorder_full = Image.new(channel_mode, (2*width, height))
img_makeBorder_part = Image.new(channel_mode, (width+200, height))

图像水平扩展整个图像

img_makeBorder_full.paste(img, (0, 0, width, height))
img_makeBorder_full.paste(img, (width, 0, 2*width, height))

前两个坐标点是左上角坐标

后两个坐标点是右下角坐标

width在前, height在后

box = (width-200, 0, width, height)
region = img.crop(box)

图像水平右侧扩展一个ROI

img_makeBorder_part.paste(img, (0, 0, width, height))
img_makeBorder_part.paste(region, (width, 0, width+200, height))
img_makeBorder_part.show()
img_makeBorder_full.show()

  1. PIL.Image 和 numpy 格式相互转换
    img = Image.open('01.jpg')
    array = np.array(img) # PIL.Image 转 numpy
    img1 = Image.fromarray(array) # numpy转 PIL.Image
    img1 = Image.fromarray(array.astype('uint8'))
    img1.save('from_array.jpg')
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容