zipkin架构

zipkin

Zipkin是一个分布式追踪系统。它有助于收集解决微服务架构中延迟问题所需的时序数据。它管理这些数据的收集和查找。Zipkin的设计基于 Google Dapper论文。

image

架构概述

追踪器驻留在你的应用程序里,并且记录发生操作的时间和元数据。他们经常装配在库上,所以对用户来说是透明的。举个例子,一个装配过的 Web 服务器,会在接收请求和发送响应进行记录。收集的追踪数据叫做 Span(跨度)。

生产环境中的装配器应该是安全并且低负载的。为此,带内(in-band)只传输 ID,并且告诉接收器仍有一个追踪在处理。完成的跨度在带外(out-of-band)汇报给 Zipkin,类似于应用程序异步汇报指标一样。

举个例子,当追踪一个操作的时候,该操作对外发送了一个 HTTP 请求,那么,为了传输 ID 就会添加一些额外的头部信息。头部信息并不是用于发送像是操作明这样的详细信息的。

装配应用中用于向 Zipkin 发送数据的组件叫做 Reporter。Reporter 通过 Transport 发送追踪数据到 Zipkin 的 Collector,Collector 持久化数据到 Storage 中。之后,API 从 Storage 中查询数据提供给 UI。

下面的图表描述了整个流程:

image

示例流程

正如概述中所提到的,标识符是在带内发送的,细节以带外形式发送到Zipkin。在这两种情况下,跟踪工具都负责创建有效的痕迹并正确渲染它们。例如,跟踪器可确保它在带内(下游)和带外(向Zipkin异步)发送的数据之间进行平衡。

以下是用户代码调用资源/ foo的http跟踪示例序列。这会导致一个跨度,在用户代码收到http响应后异步发送到Zipkin。


┌─────────────┐ ┌───────────────────────┐  ┌─────────────┐  ┌──────────────────┐
│ User Code   │ │ Trace Instrumentation │  │ Http Client │  │ Zipkin Collector │
└─────────────┘ └───────────────────────┘  └─────────────┘  └──────────────────┘
       │                 │                         │                 │
           ┌─────────┐
       │ ──┤GET /foo ├─▶ │ ────┐                   │                 │
           └─────────┘         │ record tags
       │                 │ ◀───┘                   │                 │
                           ────┐
       │                 │     │ add trace headers │                 │
                           ◀───┘
       │                 │ ────┐                   │                 │
                               │ record timestamp
       │                 │ ◀───┘                   │                 │
                             ┌─────────────────┐
       │                 │ ──┤GET /foo         ├─▶ │                 │
                             │X-B3-TraceId: aa │     ────┐
       │                 │   │X-B3-SpanId: 6b  │   │     │           │
                             └─────────────────┘         │ invoke
       │                 │                         │     │ request   │
                                                         │
       │                 │                         │     │           │
                                 ┌────────┐          ◀───┘
       │                 │ ◀─────┤200 OK  ├─────── │                 │
                           ────┐ └────────┘
       │                 │     │ record duration   │                 │
            ┌────────┐     ◀───┘
       │ ◀──┤200 OK  ├── │                         │                 │
            └────────┘       ┌────────────────────────────────┐
       │                 │ ──┤ asynchronously report span     ├────▶ │
                             │                                │
                             │{                               │
                             │  "traceId": "aa",              │
                             │  "id": "6b",                   │
                             │  "name": "get",                │
                             │  "timestamp": 1483945573944000,│
                             │  "duration": 386000,           │
                             │  "annotations": [              │
                             │--snip--                        │
                             └────────────────────────────────┘

跟踪检测报告异步跨越,以防止与跟踪系统相关的延迟或故障延迟或破坏用户代码。

Transport
装配库发送的跨度必须由装配的服务传输到 Collector。 有三种主要的传输类型:HTTP、Scribe 和 Kafka。更多信息查看跨度接收器

共有四个组件构成了 Zipkin:

  1. collector
  2. storage
  3. search
  4. web UI

Zipkin Collector

一旦追踪数据抵达 Zipkin Collector 守护进程,Zipkin Collector 为了查询,会对其进行校验、存储和索引。

Storage

Zipkin 最初是构建在将数据存储在 Cassandra 中,因为 Cassandra 易跨站,支持灵活的 schema,并且在 Twitter 内部被大规模使用。然而,我们将这个组件做成了可插拔式的。在 Cassandra 之外,我们原生支持 ElasticSearch 和 MySQL。可作为第三方扩展提供给其它后端。

Zipkin 查询服务

一旦数据被存储索引,我们就需要一种方式提取它。查询守护进程提供了一个简单的 JSON API 查询和获取追踪数据。API 的主要消费者就是 Web UI。

Web UI

我们创建了一个用户图形界面为追踪数据提供了一个漂亮的视图。Web UI 提供了基于服务、时间和标记(annotation)查看追中数据的方法。注意:UI 没有内置的身份认证功能。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容