基于人工势场法的二维平面内无人机的路径规划的matlab仿真,并通过对势场法改进避免了无人机陷入极值的问题

1.算法描述

人工势场法原理是:首先构建一个人工虚拟势场,该势场由两部分组成,一部分是目标点对移动机器人产生的引力场,方向由机器人指向目标点,另一部分是障碍物对移动机器人产生的斥力场,方向为由障碍物指向机器人。运行空间的总势场为斥力场和引力场共同叠加作用,从而通过引力和斥力的合力来控制移动机器人的移动。


物理学的势(potential),也称做“位”,是一种能量概念。在保守场里,把一个单位质点(如重力场中的单位质量,静电场中的单位正电荷)从场中的某一点A移到参考点,场力所作的功是一个定值。也就是说,在保守场中,单位质点在A点与参考点的势能之差是一定的,人们把这个势能差定义为保守场中A点的“势”。           


人工势场法路径规划是由Khatib提出的一种虚拟力法(Oussama Khatib,Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Proc of The 1985 IEEE.)。它的基本思想是将机器人在周围环境中的运动,设计成一种抽象的人造引力场中的运动,目标点对移动机器人产生“引力”,障碍物对移动机器人产生“斥力”,最后通过求合力来控制移动机器人的运动。应用势场法规划出来的路径一般是比较平滑并且安全,但是这种方法存在局部最优点问题。


人工势场就像构建了一个吸铁石,包括引力场和斥力场。黑色为障碍物,箭头为智能体要运动的方向,目标点为“Goal”。智能体按照箭头的方向到达“Goal”,目标点像有着“吸引力”一样吸引着智能体靠近。而在障碍物附近,智能体逆着箭头的方向,好像对智能体产生“排斥力”。智能体前进的方向就是这两种力的合力的方向。


当然仅仅只有引力势场是不够的,我们还需要让机器人懂得避开地图中的障碍物,这时斥力势场便有用武之地了,斥力势场的会构建一个距离障碍物越近,斥力越大的特殊势场。这个过程其实非常好理解,引力势场负责吸引机器人从起点朝着终点运动,斥力势场负责规避地图中的障碍。通常我们会用下面这个函数来构建斥力势场:


人工势场法路径规划是由Khatib提出的一种虚拟力法(Oussama Khatib,Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Proc of The 1985 IEEE.)。它的基本思想是将机器人在周围环境中的运动,设计成一种抽象的人造引力场中的运动,目标点对移动机器人产生“引力”,障碍物对移动机器人产生“斥力”,最后通过求合力来控制移动机器人的运动。应用势场法规划出来的路径一般是比较平滑并且安全,但是这种方法存在局部最优点问题。


人工势场法是一种经典的机器人路径规划算法。该算法将目标和障碍物分别看做对机器人有引力和斥力的物体,机器人沿引力与斥力的合力来进行运动。


(a) 当物体离目标点比较远时,引力将变的特别大,相对较小的斥力在甚至可以忽略的情况下,物体路径上可能会碰到障碍物

(b)当目标点附近有障碍物时,斥力将非常大,引力相对较小,物体很难到达目标点

(c)在某个点,引力和斥力刚好大小相等,方向想反,则物体容易陷入局部最优解或震荡

人工势场法(Artificial Potential Field)简称 APF,属于局部路径规划中常使用的一种方法。将传统力学中“场”的概念引入该方法,假设让智能体在这种虚拟力场下进行运动。如何设计引力场影响着该算法的性能,同时存在容易陷入局部极小点的局限性。


2.matlab算法仿真效果

matlab2017b仿真结果如下:


3.MATLAB核心程序

%

Xo=[0 0];%

k=20;%

K=0;%

m=5;%

Po=2;%0

n=8;%

a=0.5;

l=0.05;%

J=500;%

%Po

%end

%

Xsum=[10 10;1 1.5;3 2.2;4 4.5;7 6;6 2;5.5 6;8 7.8;9.5 7];%(n+1)*2[10 10]

Xj=Xo;%j=1Xj


[x,y]=meshgrid(-1:0.5:12,-1:0.5:12);

z=0.5*k./(sqrt((x-10).^2+(y-10).^2+0.09))-0.5*m*(1./(sqrt((x-1).^2+(y-1.5).^2+0.09))-1/3.5).^2-0.5*m*(1./(sqrt((x-3).^2+(y-2.2).^2+0.09))-1/3.5).^2 ...

-0.5*m*(1./(sqrt((x-4).^2+(y-4.5).^2+0.09))-1/3).^2-0.5*m*(1./(sqrt((x-7).^2+(y-6).^2+0.09))-1/3).^2-0.5*m*(1./(sqrt((x-6).^2+(y-2).^2+0.09))-1/3.5).^2 ...

-0.5*m*(1./(sqrt((x-5.5).^2+(y-6).^2+0.09))-1/4).^2-0.5*m*(1./(sqrt((x-8).^2+(y-7.8).^2+0.09))-1/3).^2-0.5*m*(1./(sqrt((x-9.5).^2+(y-7).^2+0.09))-1/3).^2;

% contour(x,y,z,[-50:20:1000]);

[C,h]=contour(x,y,z,[-80:10:300]);

set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)

colormap cool

[px,py]=gradient(z);%x,y

quiver(x,y,px,py,'k') %

p=sqrt(px.^2+py.^2);

%%

t=1;

M(t)=getframe;

t=t+1;


%*********************************

for j=1:J%

Goal(j,1)=Xj(1);%Goal

Goal(j,2)=Xj(2);

%

Theta=compute_angle(Xj,Xsum,n);%ThetaX

%

Angle=Theta(1);%Theta1

angle_at=Theta(1);%angle_at

[Fatx,Faty]=compute_Attract(Xj,Xsum,k,Angle,0,Po,n);%x,y


for i=1:n

angle_re(i)=Theta(i+1);%nn

end

%

[Frerxx,Freryy,Fataxx,Fatayy]=compute_repulsion(Xj,Xsum,m,angle_at,angle_re,n,Po,a);%x,y

%j

Fsumyj=Faty+Freryy+Fatayy;%y

Fsumxj=Fatx+Frerxx+Fataxx;%x

Position_angle(j)=atan(Fsumyj/Fsumxj);%x

%

Xnext(1)=Xj(1)+l*cos(Position_angle(j));

Xnext(2)=Xj(2)+l*sin(Position_angle(j));

%

Xj=Xnext;

X=Goal(:,1);

Y=Goal(:,2);

plot(X,Y,'.r');

M(t)=getframe;t=t+1;

%

if ((Xj(1)-Xsum(1,1))>0)&((Xj(2)-Xsum(1,2))>0)%

K=j;%

break;

%j

end%if

end%

A79

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容