scikit-learn系列之如何导入数据

如何导入数据

这是我关于scikit-learn学习系列的第一篇博客,这个系列的主要目的是跟随著名博主Jason Brownlee的博客machinelearningmastery,学习机器学习算法和相关实现。

开篇很简单,学习两种数据导入方法:一种是导入scikit-learn内置的数据集。另外一种是导入本地的或者网络上的数据集。

  1. 第一种方法,使用load_*方法导入scikit-learn数据集,可以用于回归或者分类算法的实验。代码如下:
from sklearn.datasets import load_iris
iris = load_iris()
print(iris)
  1. 第二种方法,使用到urllib和numpy包,下从网络上获取原始数据,在把数据load进来,编程numpy的数据结构,分割自变量和因变量。代码实现如下:
import numpy as np
import urllib
data_link = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(data_link)
data = np.loadtxt(raw_data,delimiter=",")
print(data.shape)
x = data[:,0:7]
y = data[:,8]
print x,y
  1. 学习到的知识点:
  • sklearn.datasets.load_iris()导入sklearn内置数据集。
  • urllib.urlopen(link)获取网络数据
  • numpy.loadtxt()导入text数据

原文链接:How to Load Data in Python with Scikit-Learn

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容