计算机专业的痛:毕业设计不知道怎么选,餐饮许可证大数据分析系统来拯救你

前言

💖💖作者:计算机程序员小杨
💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💕💕文末获取源码联系 计算机程序员小杨
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
计算机毕业设计选题
💜💜

一.开发工具简介

大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL

二.系统内容简介

基于大数据的餐饮服务许可证数据可视化分析系统是一套专门针对餐饮行业许可证数据进行深度分析和可视化展示的综合性大数据平台。该系统采用了当前主流的大数据技术架构,底层基于Hadoop分布式存储框架和Spark大数据计算引擎,通过HDFS分布式文件系统实现海量餐饮许可证数据的高效存储和管理,利用Spark SQL进行复杂的数据查询和分析处理,结合Pandas和NumPy等数据科学库进行深度数据挖掘。系统提供Python+Django和Java+Spring Boot两套完整的后端解决方案,前端采用Vue框架结合ElementUI组件库和Echarts可视化图表库,构建了功能丰富的用户界面。系统核心功能涵盖了系统首页、用户中心、用户管理等基础模块,以及专业的大屏可视化展示、餐饮许可证信息管理、经营业态分析、企业画像分析、空间地理分析和时间趋势分析等高级分析模块,还包含完善的系统管理功能。通过多维度的数据分析和直观的可视化展示,该系统能够帮助相关部门和企业深入了解餐饮行业的许可证分布规律、经营业态特征、地理空间分布和时间发展趋势,为餐饮行业监管决策和企业经营策略制定提供强有力的数据支撑,是一套技术先进、功能完善的餐饮数据分析解决方案。

三.系统功能演示

计算机专业的痛:毕业设计不知道怎么选,餐饮许可证大数据分析系统来拯救你

四.系统界面展示

餐饮许可证信息.png
大屏幕.png
登录页面.png
经营业态分析.png
空间地理分析.png
企业画像分析.png
时间趋势分析.png
用户管理.png

五.系统源码展示



# 核心功能1:餐饮许可证信息管理
def manage_restaurant_license(license_data):
    # 数据预处理和清洗
    cleaned_data = spark.sql("""
        SELECT license_id, restaurant_name, business_address, license_type,
               issue_date, expire_date, business_scope, legal_person,
               registration_capital, contact_phone, operating_status
        FROM restaurant_licenses 
        WHERE license_id IS NOT NULL AND restaurant_name != ''
    """)
    
    # 许可证状态验证
    current_date = datetime.now()
    validated_licenses = cleaned_data.withColumn(
        "status_check",
        when(col("expire_date") < current_date, "已过期")
        .when(col("issue_date") > current_date, "未生效")
        .otherwise("正常")
    )
    
    # 业务范围分类处理
    business_categories = validated_licenses.withColumn(
        "category",
        when(col("business_scope").contains("快餐"), "快餐类")
        .when(col("business_scope").contains("正餐"), "正餐类")
        .when(col("business_scope").contains("饮品"), "饮品类")
        .when(col("business_scope").contains("烧烤"), "烧烤类")
        .otherwise("其他类")
    )
    
    # 地址解析和区域划分
    region_parsed = business_categories.withColumn(
        "province", regexp_extract(col("business_address"), r"(.*?省|.*?市|.*?区)", 1)
    ).withColumn(
        "city", regexp_extract(col("business_address"), r"省(.*?市)|市(.*?区)", 1)
    )
    
    # 数据统计分析
    license_stats = region_parsed.groupBy("province", "category", "status_check").agg(
        count("license_id").alias("license_count"),
        avg("registration_capital").alias("avg_capital"),
        max("issue_date").alias("latest_issue_date"),
        min("expire_date").alias("earliest_expire_date")
    )
    
    # 异常数据检测
    anomaly_detection = region_parsed.filter(
        (col("registration_capital") < 1000) | 
        (col("registration_capital") > 50000000) |
        (col("contact_phone").rlike(r"^\d{11}$") == False)
    )
    
    # 许可证到期预警
    expire_warning = region_parsed.filter(
        datediff(col("expire_date"), current_date) <= 90
    ).select("license_id", "restaurant_name", "expire_date", "contact_phone")
    
    # 结果数据整合
    final_result = {
        "total_licenses": region_parsed.count(),
        "category_distribution": license_stats.collect(),
        "expire_warnings": expire_warning.collect(),
        "anomaly_records": anomaly_detection.count(),
        "processed_data": region_parsed.toPandas()
    }
    
    return final_result

# 核心功能2:经营业态分析
def analyze_business_format(business_data):
    # 业态数据加载和预处理
    business_df = spark.sql("""
        SELECT restaurant_id, business_type, operating_area, employee_count,
               monthly_revenue, customer_capacity, service_type, cuisine_type,
               opening_hours, delivery_service, registration_date
        FROM business_operations
        WHERE business_type IS NOT NULL
    """)
    
    # 业态分类统计
    format_distribution = business_df.groupBy("business_type").agg(
        count("restaurant_id").alias("restaurant_count"),
        avg("monthly_revenue").alias("avg_revenue"),
        avg("employee_count").alias("avg_employees"),
        avg("customer_capacity").alias("avg_capacity")
    ).orderBy(desc("restaurant_count"))
    
    # 服务类型交叉分析
    service_analysis = business_df.groupBy("business_type", "service_type").agg(
        count("restaurant_id").alias("count"),
        avg("monthly_revenue").alias("revenue_avg")
    ).withColumn(
        "revenue_rank",
        row_number().over(Window.partitionBy("business_type").orderBy(desc("revenue_avg")))
    )
    
    # 地域业态分布分析
    regional_format = business_df.withColumn(
        "region_type",
        when(col("operating_area") > 500, "大型店铺")
        .when(col("operating_area") > 200, "中型店铺")
        .otherwise("小型店铺")
    ).groupBy("business_type", "region_type").agg(
        count("restaurant_id").alias("store_count"),
        sum("monthly_revenue").alias("total_revenue")
    )
    
    # 经营效率分析
    efficiency_metrics = business_df.withColumn(
        "revenue_per_employee", col("monthly_revenue") / col("employee_count")
    ).withColumn(
        "revenue_per_sqm", col("monthly_revenue") / col("operating_area")
    ).withColumn(
        "capacity_utilization", col("employee_count") / col("customer_capacity")
    )
    
    # 业态趋势分析
    trend_analysis = business_df.withColumn(
        "registration_year", year(col("registration_date"))
    ).withColumn(
        "registration_month", month(col("registration_date"))
    ).groupBy("business_type", "registration_year", "registration_month").agg(
        count("restaurant_id").alias("new_registrations")
    ).orderBy("registration_year", "registration_month")
    
    # 竞争强度计算
    competition_intensity = business_df.groupBy("business_type", "cuisine_type").agg(
        count("restaurant_id").alias("competitor_count"),
        avg("monthly_revenue").alias("market_avg_revenue")
    ).withColumn(
        "market_saturation",
        when(col("competitor_count") > 100, "高度竞争")
        .when(col("competitor_count") > 50, "中度竞争")
        .otherwise("低度竞争")
    )
    
    # 营业时间分析
    operating_hours_analysis = business_df.withColumn(
        "daily_hours", 
        regexp_extract(col("opening_hours"), r"(\d+)", 1).cast("int")
    ).groupBy("business_type").agg(
        avg("daily_hours").alias("avg_operating_hours"),
        count(when(col("delivery_service") == "是", 1)).alias("delivery_count"),
        count("restaurant_id").alias("total_count")
    ).withColumn(
        "delivery_rate", col("delivery_count") / col("total_count") * 100
    )
    
    # 综合分析结果
    analysis_result = {
        "format_stats": format_distribution.toPandas(),
        "service_cross_analysis": service_analysis.toPandas(),
        "regional_distribution": regional_format.toPandas(),
        "efficiency_data": efficiency_metrics.toPandas(),
        "trend_data": trend_analysis.toPandas(),
        "competition_data": competition_intensity.toPandas(),
        "operating_analysis": operating_hours_analysis.toPandas()
    }
    
    return analysis_result

# 核心功能3:空间地理分析
def spatial_geographic_analysis(location_data):
    # 地理位置数据预处理
    geo_df = spark.sql("""
        SELECT restaurant_id, restaurant_name, longitude, latitude, 
               administrative_region, business_district, address_detail,
               population_density, commercial_index, traffic_convenience
        FROM restaurant_locations
        WHERE longitude IS NOT NULL AND latitude IS NOT NULL
    """)
    
    # 坐标系统标准化处理
    standardized_coords = geo_df.withColumn(
        "longitude_std", 
        when((col("longitude") >= 73) & (col("longitude") <= 135), col("longitude")).otherwise(None)
    ).withColumn(
        "latitude_std",
        when((col("latitude") >= 18) & (col("latitude") <= 54), col("latitude")).otherwise(None)
    ).filter(col("longitude_std").isNotNull() & col("latitude_std").isNotNull())
    
    # 空间聚类分析
    spatial_clusters = standardized_coords.withColumn(
        "lng_cluster", floor(col("longitude_std") * 100) / 100
    ).withColumn(
        "lat_cluster", floor(col("latitude_std") * 100) / 100
    ).groupBy("lng_cluster", "lat_cluster", "administrative_region").agg(
        count("restaurant_id").alias("restaurant_density"),
        avg("commercial_index").alias("avg_commercial_index"),
        avg("population_density").alias("avg_population_density")
    )
    
    # 热力图数据生成
    heatmap_data = spatial_clusters.withColumn(
        "heat_intensity",
        col("restaurant_density") * col("avg_commercial_index") / 100
    ).select(
        "lng_cluster", "lat_cluster", "restaurant_density", "heat_intensity"
    ).filter(col("restaurant_density") > 5)
    
    # 商圈分析
    business_district_analysis = standardized_coords.groupBy("business_district").agg(
        count("restaurant_id").alias("restaurant_count"),
        avg("commercial_index").alias("commercial_score"),
        avg("traffic_convenience").alias("traffic_score"),
        collect_list("restaurant_name").alias("restaurant_list")
    ).withColumn(
        "district_grade",
        when(col("commercial_score") > 80, "A级商圈")
        .when(col("commercial_score") > 60, "B级商圈")
        .when(col("commercial_score") > 40, "C级商圈")
        .otherwise("D级商圈")
    )
    
    # 距离计算和邻近分析
    distance_analysis = standardized_coords.alias("a").crossJoin(
        standardized_coords.alias("b")
    ).where(col("a.restaurant_id") != col("b.restaurant_id")).select(
        col("a.restaurant_id").alias("restaurant_a"),
        col("b.restaurant_id").alias("restaurant_b"),
        col("a.longitude_std").alias("lng_a"),
        col("a.latitude_std").alias("lat_a"),
        col("b.longitude_std").alias("lng_b"),
        col("b.latitude_std").alias("lat_b")
    ).withColumn(
        "distance_km",
        2 * 6371 * asin(sqrt(
            pow(sin((col("lat_b") - col("lat_a")) * 3.14159 / 360), 2) +
            cos(col("lat_a") * 3.14159 / 180) * cos(col("lat_b") * 3.14159 / 180) *
            pow(sin((col("lng_b") - col("lng_a")) * 3.14159 / 360), 2)
        ))
    ).filter(col("distance_km") <= 1.0)
    
    # 区域竞争强度分析
    competition_zones = distance_analysis.groupBy("restaurant_a").agg(
        count("restaurant_b").alias("nearby_competitors"),
        avg("distance_km").alias("avg_competitor_distance")
    ).withColumn(
        "competition_level",
        when(col("nearby_competitors") > 20, "激烈竞争")
        .when(col("nearby_competitors") > 10, "中等竞争")
        .when(col("nearby_competitors") > 5, "轻度竞争")
        .otherwise("竞争较少")
    )
    
    # 地理分布统计
    geographic_distribution = standardized_coords.groupBy("administrative_region").agg(
        count("restaurant_id").alias("total_restaurants"),
        avg("longitude_std").alias("center_longitude"),
        avg("latitude_std").alias("center_latitude"),
        max("commercial_index").alias("max_commercial_index"),
        min("commercial_index").alias("min_commercial_index")
    ).withColumn(
        "market_potential",
        (col("max_commercial_index") - col("min_commercial_index")) / col("total_restaurants")
    )
    
    # 空间分析结果整合
    spatial_result = {
        "cluster_data": spatial_clusters.toPandas(),
        "heatmap_points": heatmap_data.toPandas(),
        "district_analysis": business_district_analysis.toPandas(),
        "competition_zones": competition_zones.toPandas(),
        "geographic_stats": geographic_distribution.toPandas(),
        "nearby_restaurants": distance_analysis.toPandas()
    }
    
    return spatial_result




六.系统文档展示

结束

💕💕文末获取源码联系 计算机程序员小杨

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容