机器学习实战-KNN

工作原理:存在一个样本数据集合,也称作训练样本集,样本集中每个数据都存在标签,即已知样本集中每一数据与其所属分类的对应关系。当输入没有标签的新数据, 将新数据的每个特征与样本集中数据对应的特征进行比较,提取样本集中特征最相似数据(最近邻)的k个分类标签(K-近邻),最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
python代码(python3版本):

from numpy import *
import operator
def createDataset():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels
# K-近邻算法
def classify0(inX, dataSet, labels, k):
    dataSetSize=dataSet.shape[0]
    diffMat=tile(inX, (dataSetSize,1))-dataSet
    sqDiffMat=diffMat**2
    # 每行元素相加
    sqDistances=sqDiffMat.sum(axis=1)
    distances=sqDistances**0.5
    # 排序输出其下标值
    sortedDistIndicies=distances.argsort()  
    classCount={}
    for i in range(k):
        voteIlabel=labels[sortedDistIndicies[i]]
        # 返回key为voteIlabel的value,如果没有这个元素则返回0,有就加1
        classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
    # operator.itemgetter(1)表示对第二个域进行排序,reverse=True表示倒序排序
    sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]
# 将文本记录转换为numpy
def file2matrix(filename):
    fr=open(filename)
    arrayOLines=fr.readlines()
    numberOfLines=len(arrayOLines)
    # 用0填充二维数组,numberOfLines行3列
    returnMat=zeros((numberOfLines,3))
    classLabelVector=[]
    index=0
    for line in arrayOLines:
        line=line.strip()
        listFromLine=line.split('\t')
        returnMat[index,:]=listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))
        index+=1
    return returnMat,classLabelVector
# 归一化特征值
def autoNorm(dataSet):
    minVals=dataSet.min(0)
    maxVals=dataSet.max(0)
    ranges=maxVals-minVals
    normDataSet=zeros(shape(dataSet))
    m=dataSet.shape[0]
    normDataSet=dataSet-tile(minVals,(m,1))
    normDataSet=normDataSet/tile(ranges,(m,1))
    return normDataSet,ranges,minVals
# 针对约会网站的测试
def datingClassTest():
    hoRatio=0.10
    datingDataMat,datingLabels=file2matrix('datingTestSet2.txt')
    normMat,ranges,minVals=autoNorm(datingDataMat)
    m=normMat.shape[0]
    # 选出10%的数据进行测试
    numTestVecs=int(m*hoRatio)
    errorCount=0.0
    for i in range(numTestVecs):
        classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
        print('the classifier came back with: %d, the real answer is: %d' % (classifierResult,datingLabels[i]))
        if(classifierResult!=datingLabels[i]):
            errorCount+=1.0
    print('the total error rate is: %.2f%%' % (errorCount/float(numTestVecs)*100))
# 预测函数
def classifyPerson():
    resultList=['not at all','in small doses','in large doses']
    percentTats=float(input('percentage of time spent playing video games?'))
    ffMiles=float(input('frequent flier miles earned per year?'))
    iceCream=float(input('liters of ice cream consumed per year?'))
    datingDataMat,datingLabels=file2matrix('datingTestSet2.txt')
    normMat,ranges,minVals=autoNorm(datingDataMat)
    inArr=array([ffMiles,percentTats,iceCream])
    classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
    print('you will probably like this person: ',resultList[classifierResult-1])

以上内容均来自《机器学习实战》

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容

  • KNN (k-近邻算法) 其工作原理是: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有存在标签...
    z3r0me阅读 187评论 0 0
  • 一.朴素贝叶斯 1.分类理论 朴素贝叶斯是一种基于贝叶斯定理和特征条件独立性假设的多分类的机器学习方法,所...
    wlj1107阅读 3,079评论 0 5
  • 注:题中所指的『机器学习』不包括『深度学习』。本篇文章以理论推导为主,不涉及代码实现。 前些日子定下了未来三年左右...
    我偏笑_NSNirvana阅读 39,948评论 12 145
  • 机器学习实战之K-近邻算法(二) 2-1 K-近邻算法概述 简单的说,K-近邻算法采用测量不同特征值之间的距离方法...
    凌岸_ing阅读 1,688评论 0 6
  • 许多年前,法国巴黎的街头出现了一种新型的散步者。他们总是缓步踏入游廊,被称为“漫步者”。他们喜欢带上一只小乌龟,让...
    paya阅读 683评论 0 1