批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

转载自链接:https://www.cnblogs.com/lliuye/p/9451903.html

梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降法也常用在深度学习中进行模型的训练。接下来,我们将对这三种不同的梯度下降法进行理解。

为了便于理解,这里我们将使用只含有一个特征的线性回归来展开。此时线性回归的假设函数为:

hθ(x(i))=θ1x(i)+θ0hθ(x(i))=θ1x(i)+θ0

其中 i=1,2,...,mi=1,2,...,m 表示样本数。

对应的目标函数(代价函数)即为:

J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2

下图为 J(θ0,θ1)J(θ0,θ1) 与参数 θ0,θ1θ0,θ1 的关系的图:

1、批量梯度下降(Batch Gradient Descent,BGD)

批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。从数学上理解如下:

(1)对目标函数求偏导:

ΔJ(θ0,θ1)Δθj=1m∑i=1m(hθ(x(i))−y(i))x(i)jΔJ(θ0,θ1)Δθj=1m∑i=1m(hθ(x(i))−y(i))xj(i)

其中 i=1,2,...,mi=1,2,...,m 表示样本数, j=0,1j=0,1 表示特征数,这里我们使用了偏置项 x(i)0=1x0(i)=1 。

(2)每次迭代对参数进行更新:

θj:=θj−α1m∑i=1m(hθ(x(i))−y(i))x(i)jθj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)

注意这里更新时存在一个求和函数,即为对所有样本进行计算处理,可与下文SGD法进行比较。

伪代码形式为:

repeat{

 θj:=θj−α1m∑mi=1(hθ(x(i))−y(i))x(i)jθj:=θj−α1m∑i=1m(hθ(x(i))−y(i))xj(i)

(for j =0,1)

}

优点:

(1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。

(2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。

缺点:

(1)当样本数目 mm 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。

从迭代的次数上来看,BGD迭代的次数相对较少。其迭代的收敛曲线示意图可以表示如下:

2、随机梯度下降(Stochastic Gradient Descent,SGD)

随机梯度下降法不同于批量梯度下降,随机梯度下降是每次迭代使用一个样本来对参数进行更新。使得训练速度加快。

对于一个样本的目标函数为:

J(i)(θ0,θ1)=12(hθ(x(i))−y(i))2J(i)(θ0,θ1)=12(hθ(x(i))−y(i))2

(1)对目标函数求偏导:

ΔJ(i)(θ0,θ1)θj=(hθ(x(i))−y(i))x(i)jΔJ(i)(θ0,θ1)θj=(hθ(x(i))−y(i))xj(i)

(2)参数更新:

θj:=θj−α(hθ(x(i))−y(i))x(i)jθj:=θj−α(hθ(x(i))−y(i))xj(i)

注意,这里不再有求和符号

伪代码形式为:

repeat{

for i=1,...,m{

 θj:=θj−α(hθ(x(i))−y(i))x(i)jθj:=θj−α(hθ(x(i))−y(i))xj(i)

(for j =0,1)

}

}

优点:

(1)由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮参数的更新速度大大加快。

缺点:

(1)准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。

(2)可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。

(3)不易于并行实现。

解释一下为什么SGD收敛速度比BGD要快:

答:这里我们假设有30W个样本,对于BGD而言,每次迭代需要计算30W个样本才能对参数进行一次更新,需要求得最小值可能需要多次迭代(假设这里是10);而对于SGD,每次更新参数只需要一个样本,因此若使用这30W个样本进行参数更新,则参数会被更新(迭代)30W次,而这期间,SGD就能保证能够收敛到一个合适的最小值上了。也就是说,在收敛时,BGD计算了 10×30W10×30W 次,而SGD只计算了 1×30W1×30W 次。

从迭代的次数上来看,SGD迭代的次数较多,在解空间的搜索过程看起来很盲目。其迭代的收敛曲线示意图可以表示如下:

3、小批量梯度下降(Mini-Batch Gradient Descent, MBGD)

小批量梯度下降,是对批量梯度下降以及随机梯度下降的一个折中办法。其思想是:每次迭代 使用 ** batch_size** 个样本来对参数进行更新。

这里我们假设 batchsize=10batchsize=10 ,样本数 m=1000m=1000 。

伪代码形式为:

repeat{

for i=1,11,21,31,...,991{

 θj:=θj−α110∑(i+9)k=i(hθ(x(k))−y(k))x(k)jθj:=θj−α110∑k=i(i+9)(hθ(x(k))−y(k))xj(k)

(for j =0,1)

}

}

优点:

(1)通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。

(2)每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。(比如上例中的30W,设置batch_size=100时,需要迭代3000次,远小于SGD的30W次)

(3)可实现并行化。

缺点:

(1)batch_size的不当选择可能会带来一些问题。

batcha_size的选择带来的影响:

(1)在合理地范围内,增大batch_size的好处:

a. 内存利用率提高了,大矩阵乘法的并行化效率提高。

b. 跑完一次 epoch(全数据集)所需的迭代次数减少,对于相同数据量的处理速度进一步加快。

c. 在一定范围内,一般来说 Batch_Size 越大,其确定的下降方向越准,引起训练震荡越小。

(2)盲目增大batch_size的坏处:

a. 内存利用率提高了,但是内存容量可能撑不住了。

b. 跑完一次 epoch(全数据集)所需的迭代次数减少,要想达到相同的精度,其所花费的时间大大增加了,从而对参数的修正也就显得更加缓慢。

c. Batch_Size 增大到一定程度,其确定的下降方向已经基本不再变化。

下图显示了三种梯度下降算法的收敛过程:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343