Glide都在用LruCache,你会多少呢?

前言

说到Glide就有点尴尬,我本来想出一篇《手撕Glide》,但是很遗憾,源码实在太多了。写着写着就3000多字了,甚至还没写完,实在不合适,因为我写文的原则是短小精悍,所以就暂时不出这篇文章了,这次就先讲讲Glide都在用的LruCache有什么神奇之处。而且我抖音的面试在即,也不知道自己水平到了没有,现在出一篇算一篇先。

思维导图

使用方法及结果

在项目中直接导入Glide的库,调用内部的LruCache来看看效果。

LruCache lruCache = new LruCache<String, Integer>(2);
lruCache.put("1", 1);
lruCache.put("2", 2);
lruCache.put("1", 1);
lruCache.put("3", 3);
System.out.println(lruCache.get("1"));
System.out.println(lruCache.get("2"));
System.out.println(lruCache.get("3"));

简要说明代码内容,创建一个空间为2的存储空间(这里先不透漏内部结构),用put()方法对数据进行存储,再通过get()对每个数据进行一次获取操作,然后我们再来看看结果。

我的天!!2没了? 这是怎么一回事??为了知道答案,那我们只好进入Glide的库中看看原因了。

LruCache源码导读

先看看LruCache的变量家庭里有哪些小家伙把。

public class LruCache<T, Y> {
  // 容量为100的双向链表
  private final Map<T, Y> cache = new LinkedHashMap<>(100, 0.75f, true); 
  private final long initialMaxSize; // 初始化最大容量
  private long maxSize; // 最大容量
  private long currentSize; // 已存在容量
}

同样对于LruCache来说不也和HashMap一样只有三步骤要走嘛,那我就从这三个步骤入手探索一下LruCache好了,但是我们要带上一个问题出发initialMaxSize的作用是什么?

new LruCache<T, Y>(size)

  public LruCache(long size) {
    this.initialMaxSize = size;
    this.maxSize = size;
  }

到这里想来读者都已经知道套路了,也就初始化了初始化最大容量和最大容量,那就直接下一步。

put(key, value)

public synchronized Y put(@NonNull T key, @Nullable Y item) {
    // 返回值就是一个1
    final int itemSize = getSize(item);
    // 如果1大于等于最大值就无操作
    // 也就说明整个初始化的时候并不能将size设置成1
    if (itemSize >= maxSize) {
      //用于重写的保留方法
      onItemEvicted(key, item);
      return null;
    }
    // 对当前存在数据容量加一
    if (item != null) {
      currentSize += itemSize;
    }
    @Nullable final Y old = cache.put(key, item);
    if (old != null) {
      currentSize -= getSize(old);
    
      if (!old.equals(item)) {
        onItemEvicted(key, old);
      }
    }
    evict(); // 1 -->

    return old;
  }
// 由注释1直接调用的方法
private void evict() {
    trimToSize(maxSize); // 2 -->
  }
// 由注释2直接调用的方法 
protected synchronized void trimToSize(long size) {
    Map.Entry<T, Y> last;
    Iterator<Map.Entry<T, Y>> cacheIterator;
    // 说明当前的容量大于了最大容量
    // 需要对最后的数据进行一个清理
    while (currentSize > size) {
      cacheIterator = cache.entrySet().iterator();
      last = cacheIterator.next();
      final Y toRemove = last.getValue();
      currentSize -= getSize(toRemove);
      final T key = last.getKey();
      cacheIterator.remove();
      onItemEvicted(key, toRemove);
    }
  }

这是一个带锁机制的方法,通过对当前容量和最大容量的判断,来抉择是否需要把我们的数据进行一个删除。但是问题依旧存在,initialMaxSize的作用是什么?,我们能够知道的是maxSize是一个用于控制容量大小的值。

get()

 public synchronized Y get(@NonNull T key) {
    return cache.get(key);
  }

那这就是调用了LinkedHashMap中的数据,但是终究还是没有说出initialMaxSize的作用。

关于initialMaxSize

这里就不买关子了,因为其实就我的视角来看这个initialMaxSize确实是没啥用处的。哈哈哈哈哈!!!但是,又一个地方用到了它。

public synchronized void setSizeMultiplier(float multiplier) {
    if (multiplier < 0) {
      throw new IllegalArgumentException("Multiplier must be >= 0");
    }
    maxSize = Math.round(initialMaxSize * multiplier);
    evict();
  }

也就是用于调控我们的最大容量大小,但是我觉得还是没啥用,可是是我太菜了吧,这个方法没有其他调用它的方法,是一个我们直接在使用过程中使用的,可能和数据多次使用的一个保存之类的问题相关联把,场景的话也就类似Glide的图片缓存加载把。也希望知道的读者能给我一个解答。

LinkedHashMap

因为操作方式和HashMap一致就不再复述,就看看他的节点长相。

static class LinkedHashMapEntry<K,V> extends HashMap.Node<K,V> {
        // 存在前后节点,也就是我们所说的双向链表
        LinkedHashMapEntry<K,V> before, after;
        LinkedHashMapEntry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }

但是到这里,我又出现了一个问题,为什么我没有看到整个数据的移动?也就是最近使用的数据应该调换到最后开始的位置,他到底实在哪里进行处理的呢?做一个猜想好了,既然是使用了put()才会造成双向链表中数据的变换,那我们就应该是需要进入对LinkedHashMap.put()方法中进行查询。

当然有兴趣探索的读者们,我需要提一个醒,就是这次的调用不可以直接进行对put()进行查询,那样只会调用到一个接口函数,或者是抽象类函数,最适合的方法还是使用我们的断点来进行探索查询。

但是经过一段努力后,不断深度调用探索发现这样的问题,他最后会调用到这样的问题。

// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { } // 把数据移动到最后一位
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }

这是之前我们在了解HashMap是并没有发现几个方法,上面也明确写着为LinkedHashMap保留。哇哦!!那我们的操作肯定实在这些里面了。

// --> HashMap源码第656行附近调用到下方方法
// 在putVal()方法内部存在这个出现
afterNodeAccess(e);
// --> LinkedHashMap对其具体实现
// 就是将当前数据直接推到最后一个位置
// 也就是成为了最近刚使用过的数据
void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMapEntry<K,V> last;
        if (accessOrder && (last = tail) != e) {
            LinkedHashMapEntry<K,V> p =
                (LinkedHashMapEntry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            if (b == null)
                head = a;
            else
                b.after = a;
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;
            ++modCount;
        }
    }

好了,自此我们也就清楚了整个链表的变换过程了。

实战:手撸LruCache

这是一个非常紧张刺激的环节了,撸代码前,我们来找找思路好了。

(1)存储容器用什么? 因为LinkedHashMap的思路太过冗长,我们用数组来重新完成整个代码的构建

(2)关键调用方法put()get()以及put()涉及的已存在变量移位。

哇哦!看来要做的事情也并没有这么多,那我们就先来看看第一次构造出来的框架好了。

public class LruCache {

    private Object objects[];
    private int maxSize;
    private int currentSize;

    public LruCache(int size){
        objects = new Object[size];
        maxSize = size;
    }

    /**
     * 插入item
     * @param item
     */
    public void put(Object item){
        
    }

    /**
     * 获取item
     * @param item
     */
    public Object get(Object item){
        return null;
    }

    /**
     * 根据下标对应,将后续数组移位
     * @param index
     */
    public void move(int index){
        
    }
}

因为只要是数组变换就存在移位,所以移位操作是必不可少的。那我们现在的工作也就是把数据填好了,对应的移位是怎么样的操作的思路了。

public class LruCache {

    public Object objects[];
    private int maxSize;
    public int currentSize;

    public LruCache(int size) {
        objects = new Object[size];
        maxSize = size;
    }

    /**
     * 插入item
     *
     * @param item
     */
    public void put(Object item) {
        // 容量未满时分成两种情况
        // 1。 容器内存在
        // 2。 容器内不存在
        int index = search(item);
        if (index == -1) {
            if (currentSize < maxSize) { //容器未满,直接插入
                objects[currentSize] = item;
                currentSize++;
            } else { // 容器已满,删去头部插入
                move(0);
                objects[currentSize - 1] = item;
            }
        }else {
            move(index);
        }
    }

    /**
     * 获取item
     *
     * @param item
     */
    public Object get(Object item) {
        int index = search(item);
        return index == -1 ? null : objects[index];
    }

    /**
     * 根据下标对应,将后续数组移位
     *
     * @param index
     */
    public void move(int index) {
        Object temp = objects[index];
        // 将后续数组移位
        for (int i = index; i < currentSize - 1; i++) {
            objects[i] = objects[i + 1];
        }
        objects[currentSize - 1] = temp;
    }

    /**
     * 搜寻数组中的数组
     * 存在则返回下标
     * 不存在则返回 -1
     * @param item
     * @return
     */
    private int search(Object item) {
        for (int i = 0; i < currentSize; i++) {
            if (item.equals(objects[i])) return I;
        }
        return -1;
    }

因为已经真的写的比较详细了,也没什么难度的撸了我的20分钟,希望读者们能够快入入门,下面给出我的一份测试样例,结束这个话题。

总结

想来我们都知道在操作系统中有这样的问题需要思考,具体题型的话就是缺页中断。
用一个例题来彻底了解LruCache的算法。

例: 存入内存的数据序列为:(1,2,1,3,2),内存容量为2。

最近使用 最久未使用 动作
1 1入内存
2 1 2入内存
1 2 1入内存,交换1和2的使用频率
3 1 3入内存,内存不足,排出2
2 3 2入内存,内存不足,排出1

LruCache 主要用于缓存的处理,这里的缓存主要指的是内存缓存和磁盘缓存。

以上就是我的学习成果,如果有什么我没有思考到的地方或是文章内存在错误,欢迎与我分享。


相关文章推荐:

面试中的HashMap、ConcurrentHashMap和Hashtable,你知道多少?

还不会七大排序,是准备家里蹲吗!?

手撕ButterKnife

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351