解读秒杀业务:Redis如何助力高并发秒杀系统以及完美解决超卖问题

秒杀业务

在电商领域,存在着典型的秒杀业务场景,那何谓秒杀场景呢。简单的来说就是一件商品的购买人数远远大于这件商品的库存,而且这件商品在很短的时间内就会被抢购一空。比如每年的618、双11大促,小米新品促销等业务场景,就是典型的秒杀业务场景。

秒杀业务最大的特点就是瞬时并发流量高,在电商系统中,库存数量往往会远远小于并发流量,比如:天猫的秒杀活动,可能库存只有几百、几千件,而瞬间涌入的抢购并发流量可能会达到几十到几百万。

所以,我们可以将秒杀系统的业务特点总结如下。

需要更多Java知识点和面试题的朋友可以加q群:1103806531  备注:简书   免费领取~

(1)限时、限量、限价

在规定的时间内进行;秒杀活动中商品的数量有限;商品的价格会远远低于原来的价格,也就是说,在秒杀活动中,商品会以远远低于原来的价格出售。

例如,秒杀活动的时间仅限于某天上午10点到10点半,商品数量只有10万件,售完为止,而且商品的价格非常低,例如:1元购等业务场景。

限时、限量和限价可以单独存在,也可以组合存在。

(2)活动预热

需要提前配置活动;活动还未开始时,用户可以查看活动的相关信息;秒杀活动开始前,对活动进行大力宣传。

(3)持续时间短

购买的人数数量庞大;商品会迅速售完。

在系统流量呈现上,就会出现一个突刺现象,此时的并发访问量是非常高的,大部分秒杀场景下,商品会在极短的时间内售完。

秒杀三阶段

通常,从秒杀开始到结束,往往会经历三个阶段:

准备阶段:这个阶段也叫作系统预热阶段,此时会提前预热秒杀系统的业务数据,往往这个时候,用户会不断刷新秒杀页面,来查看秒杀活动是否已经开始。在一定程度上,通过用户不断刷新页面的操作,可以将一些数据存储到Redis中进行预热。

秒杀阶段:这个阶段主要是秒杀活动的过程,会产生瞬时的高并发流量,对系统资源会造成巨大的冲击,所以,在秒杀阶段一定要做好系统防护。

结算阶段: 完成秒杀后的数据处理工作,比如数据的一致性问题处理,异常情况处理,商品的回仓处理等。

Redis助力秒杀系统

我们可以在Redis中设计一个Hash数据结构,来支持商品库存的扣减操作,如下所示。

seckill:goodsStock:${goodsId}{

    totalCount:200,

    initStatus:0,

    seckillCount:0

}

在我们设计的Hash数据结构中,有三个非常主要的属性。

totalCount:表示参与秒杀的商品的总数量,在秒杀活动开始前,我们就需要提前将此值加载到Redis缓存中。

initStatus:我们把这个值设计成一个布尔值。秒杀开始前,这个值为0,表示秒杀未开始。可以通过定时任务或者后台操作,将此值修改为1,则表示秒杀开始。

seckillCount:表示秒杀的商品数量,在秒杀过程中,此值的上限为totalCount,当此值达到totalCount时,表示商品已经秒杀完毕。


我们可以通过下面的代码片段在秒杀预热阶段,将要参与秒杀的商品数据加载的缓存。

/**

* @author binghe

* @description 秒杀前构建商品缓存代码示例

*/

public class SeckillCacheBuilder{

    private static final String GOODS_CACHE = "seckill:goodsStock:";

    private String getCacheKey(String id) {

        return  GOODS_CACHE.concat(id);

    }

    public void prepare(String id, int totalCount) {

        String key = getCacheKey(id);

        Map<String, Integer> goods = new HashMap<>();

        goods.put("totalCount", totalCount);

        goods.put("initStatus", 0);

        goods.put("seckillCount", 0);

        redisTemplate.opsForHash().putAll(key, goods);

    }

}

秒杀开始的时候,我们需要在代码中首先判断缓存中的seckillCount值是否小于totalCount值,如果seckillCount值确实小于totalCount值,我们才能够对库存进行锁定。在我们的程序中,这两步其实并不是原子性的。如果在分布式环境中,我们通过多台机器同时操作Redis缓存,就会发生同步问题,进而引起“超卖”的严重后果。

在电商领域,有一个专业名词叫作“超卖”。顾名思义:“超卖”就是说卖出的商品数量比商品的库存数量多,这在电商领域是一个非常严重的问题。那么,我们如何解决“超卖”问题呢?

Lua脚本完美解决超卖问题

我们如何解决多台机器同时操作Redis出现的同步问题呢?一个比较好的方案就是使用Lua脚本。我们可以使用Lua脚本将Redis中扣减库存的操作封装成一个原子操作,这样就能够保证操作的原子性,从而解决高并发环境下的同步问题。

例如,我们可以编写如下的Lua脚本代码,来执行Redis中的库存扣减操作。

local resultFlag = "0"

local n = tonumber(ARGV[1])

local key = KEYS[1]

local goodsInfo = redis.call("HMGET",key,"totalCount","seckillCount")

local total = tonumber(goodsInfo[1])

local alloc = tonumber(goodsInfo[2])

if not total then

    return resultFlag

end

if total >= alloc + n  then

    local ret = redis.call("HINCRBY",key,"seckillCount",n)

    return tostring(ret)

end

return resultFlag


我们可以使用如下的Java代码来调用上述Lua脚本。

public int secKill(String id, int number) {

    String key = getCacheKey(id);

    Object seckillCount =  redisTemplate.execute(script, Arrays.asList(key), String.valueOf(number));

    return Integer.valueOf(seckillCount.toString());

}


这样,我们在执行秒杀活动时,就能够保证操作的原子性,从而有效的避免数据的同步问题,进而有效的解决了“超卖”问题。

总结

为大家整理了各个知识点模块整理文档和更多大厂面试真题,有需要的朋友可以加q群:1103806531  备注:简书   免费领取~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350