《python算法教程》Day10 - 平面最近点对问题

今天是《python算法教程》的第10篇读书笔记。笔记的主要内容是使用python实现求最小点对的时间复杂度为O(nlogn)的算法。

平面最小点对问题介绍

在几何学中,有一个基本问题:在一个平面的n个点中,求距离最近的两个点。
最直接的思路是遍历所有的点对,通过比较所有点对的距离找出距离最近的两点,即暴力算法。但是,这个思路的时间复杂度为O(n^2)。显然,这种算法的时间复杂度是不能接受的。
因此,是否可以考虑通过分治法的思路,将上述问题的解法的时间复杂度控制在O(nlog2n)?答案是可以的。具体的算法讲解可参考下述博文:

https://blog.csdn.net/liufeng_king/article/details/8484284

但运用分治法求解上述问题时,需要注意一点,距离最小的两个点可能不在于同一个分组的点集中,而是分别来自于不同的点集中。

代码演示

暴力算法

#计算两点的距离
import math
def calDis(seq):
    dis=math.sqrt((seq[0][0]-seq[1][0])**2+(seq[0][1]-seq[1][1])**2)
    return dis

#暴力算法主体函数
def calDirect(seq):
    minDis=float('inf')
    pair=[]
    for i in range(len(seq)):
        for j in range(i+1,len(seq)):
            dis=calDis([seq[i],seq[j]])
            if dis <minDis:
                minDis=dis
                pair=[seq[i],seq[j]]
    return [pair,minDis]

分治法求解

#求出平面中距离最近的点对(若存在多对,仅需求出一对)
import random
import math

#计算两点的距离
def calDis(seq):
    dis=math.sqrt((seq[0][0]-seq[1][0])**2+(seq[0][1]-seq[1][1])**2)
    return dis

#生成器:生成横跨跨两个点集的候选点
def candidateDot(u,right,dis,med_x):
    cnt=0
    #遍历right(已按横坐标升序排序)。若横坐标小于med_x-dis则进入下一次循环;若横坐标大于med_x+dis则跳出循环;若点的纵坐标好是否落在在[u[1]-dis,u[1]+dis],则返回这个点
    for v in right:
        if v[0]<med_x-dis:
            continue
        if v[0]>med_x+dis:
            break
        if v[1]>=u[1]-dis and v[1]<=u[1]+dis:
            yield v
   
#求出横跨两个部分的点的最小距离
def combine(left,right,resMin,med_x):
    dis=resMin[1]
    minDis=resMin[1]
    pair=resMin[0]
    for u in left:
        if u[0]<med_x-dis:
            continue
        for v in candidateDot(u,right,dis,med_x):
            dis=calDis([u,v])
            if dis<minDis:
                minDis=dis
                pair=[u,v]
    return [pair,minDis]


#分治求解
def divide(seq):
    #求序列元素数量
    n=len(seq)
    #按点的纵坐标升序排序
    seq=sorted(seq)
    #递归开始进行
    if n<=1:
        return None,float('inf')
    elif n==2:
        return [seq,calDis(seq)]
    else:
        half=int(len(seq)/2)
        med_x=(seq[half][0]+seq[-half-1][0])/2
        left=seq[:half]    
        resLeft=divide(left)
        right=seq[half:]
        resRight=divide(right)
        #获取两集合中距离最短的点对
        if resLeft[1]<resRight[1]:
            resMin=combine(left,right,resLeft,med_x)
        else:
            resMin=combine(left,right,resRight,med_x)
        pair=resMin[0]
        minDis=resMin[1]
    return [pair,minDis]    
    
seq=[(random.randint(0,1000000),random.randint(0,1000000)) for x in range(500000)]
print("优化算法",divide(seq))
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352

推荐阅读更多精彩内容

  • 归去来兮。 1.1 说明 本篇为《挑战程序设计竞赛(第2版)》[http://www.ituring.com.cn...
    尤汐Yogy阅读 14,323评论 0 160
  • 机器学习是做NLP和计算机视觉这类应用算法的基础,虽然现在深度学习模型大行其道,但是懂一些传统算法的原理和它们之间...
    在河之简阅读 20,500评论 4 65
  • ‘橘生淮南为橘,生于淮北则为枳,叶徒相似,其实味不同’。环境的不同,会造成生长于其中植物的结果不同。同样的,环境的...
    辰枫设计阅读 22,633评论 0 2
  • 不过一棵树
    夭凪阅读 139评论 0 0
  • 昼夜听到风在颤抖, 依稀想起昨日的面容; 蓝天下飞奔的影子, 唱着歌笑岁月匆匆。 多少青春鲜亮的画面, 留在过去时...
    依然yiran06阅读 173评论 0 0