大数据知识 | hive初识

hive简介

hive架构

hive是什么

官网这样说:https://hive.apache.org/

hive .png

hive是用来解决海量结构化的日志数据统计问题的,一般是作为建立在Hadoop上的OLAP数据仓库。它是一个客户端,主要是将SQL转化成MR任务,特别适合离线处理。它有着类似于SQL的语法,上手难度小,最特别的是它有着统一的元数据管理便于其他组件也可以使用。

所以hiv产生的很大的原因就是:非java编程者对hdfs的数据做mapreduce操作!!!

hive简介

Hive : 数据仓库。(各种数据源的数据进行统一规整)
Hive:解释器,编译器,优化器等。
Hive 运行时,元数据存储在关系型数据库里面。(HDFS当中所有的数据都是文本型数据,没有字段的映射关系)

c


hive架构.png

(1)用户接口主要有三个:CLI,Client 和 WUI。

  • 其中最常用的是CLI,CLI启动的时候,会同时启动一个Hive副本。大都是命令行,用户体验差
  • Client是Hive的客户端,用户连接至Hive Server。在启动 Client模式的时候,需要指出Hive Server所在节点,并且在该节点启动Hive Server。
  • WUI是通过浏览器访问Hive。

(2)Metastore:Hive将元数据存储在数据库中,如mysql、derby(内存数据库,一般不用)。Hive中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。

  • 内嵌模式


    内嵌模式.png

    内嵌模式是Hive Metastore的最简单的部署方式,使用Hive内嵌的Derby数据库来存储元数据。但是Derby只能接受一个Hive会话的访问,试图启动第二个Hive会话就会导致Metastore连接失败。

  • 本地模式


    本地模式

本地模式是Metastore的默认模式(懒人专用模式)。该模式下,单Hive会话(一个Hive 服务JVM)以组件方式调用Metastore和Driver。我们可以采用MySQL作为Metastore的数据库。

  • 远程模式


    远程模式.png

用于非Java客户端访问元数据库,在服务器端启动MetaStoreServer,客户端利用Thrift协议通过MetaStoreServer访问元数据库
远程模式将Metastore分离出来,成为一个独立的Hive服务(Metastore服务还可以部署多个)。这样的模式可以将数据库层完全置于防火墙后,客户就不再需要用户名和密码登录数据库,避免了认证信息的泄漏。

(3)解释器、编译器、优化器完成HQL查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在HDFS中,并在随后有MapReduce调用执行。

(4)Hive的数据存储在HDFS中,大部分的查询、计算由MapReduce完成(包含*的查询,比如select * from tbl不会生成MapRedcue任务)

(5)Driver:包含编译器,优化器和执行器
接收客户端请求-->编译,解释,执行-->提交给yarn执行
Driver 每一个Hive服务都需要调用Driver来完成HQL语句的翻译和执行。通俗地说,Driver就是HQL编译器,它解析和优化HQL语句,将其转换成一个Hive Job(可以是MapReduce,也可以是Spark等其他任务)并提交给Hadoop集群。

(6)Operator


image.png

Hive的架构

  • 编译器将一个Hive SQL转换操作符
  • 操作符是Hive的最小的处理单元
  • 每个操作符代表HDFS的一个操作或者一道MapReduce作业

Operator

  • Operator都是hive定义的一个处理过程
    Operator都定义有:
  • protected List <Operator<? extends Serializable >> childOperators;
  • protected List <Operator<? extends Serializable >> parentOperators;
  • protected boolean done; // 初始化值为false
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容