from lib.include import *
from lib.utility.draw import *
from lib.utility.file import *
from lib.net.rate import *
COMMON_STRING ='@%s: \n' % os.path.basename(__file__)
打印文件名
if 1:
SEED = int(time.time()) #35202 #35202 #123 #
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
COMMON_STRING += '\tset random seed\n'
COMMON_STRING += '\t\tSEED = %d\n'%SEED
torch.backends.cudnn.benchmark = False ##uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms. -
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
COMMON_STRING += '\tset cuda environment\n'
COMMON_STRING += '\t\ttorch.__version__ = %s\n'%torch.__version__
COMMON_STRING += '\t\ttorch.version.cuda = %s\n'%torch.version.cuda
COMMON_STRING += '\t\ttorch.backends.cudnn.version() = %s\n'%torch.backends.cudnn.version()
try:
COMMON_STRING += '\t\tos[\'CUDA_VISIBLE_DEVICES\'] = %s\n'%os.environ['CUDA_VISIBLE_DEVICES']
NUM_CUDA_DEVICES = len(os.environ['CUDA_VISIBLE_DEVICES'].split(','))
except Exception:
COMMON_STRING += '\t\tos[\'CUDA_VISIBLE_DEVICES\'] = None\n'
NUM_CUDA_DEVICES = 1
COMMON_STRING += '\t\ttorch.cuda.device_count() = %d\n'%torch.cuda.device_count()
#print ('\t\ttorch.cuda.current_device() =', torch.cuda.current_device())
COMMON_STRING += '\n'
if __name__ == '__main__':
print (COMMON_STRING)
输出如下结果
matplotlib.get_backend : TkAgg#这句是在import其他包输出的
@common.py:
set random seed
SEED = 1571291014
set cuda environment
torch.__version__ = 1.2.0#torch1.2版本
torch.version.cuda = 10.0.130#cuda10.0
torch.backends.cudnn.version() = 7602#cudnn版本7.6
os['CUDA_VISIBLE_DEVICES'] = None
torch.cuda.device_count() = 1