common.py源码分析

from lib.include import *
from lib.utility.draw import *
from lib.utility.file import *
from lib.net.rate import *
COMMON_STRING ='@%s:  \n' % os.path.basename(__file__)

打印文件名

if 1:
    SEED = int(time.time()) #35202   #35202  #123  #
    random.seed(SEED)
    np.random.seed(SEED)
    torch.manual_seed(SEED)
    torch.cuda.manual_seed_all(SEED)
    COMMON_STRING += '\tset random seed\n'
    COMMON_STRING += '\t\tSEED = %d\n'%SEED

    torch.backends.cudnn.benchmark     = False  ##uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms. -
    torch.backends.cudnn.enabled       = True
    torch.backends.cudnn.deterministic = True

    COMMON_STRING += '\tset cuda environment\n'
    COMMON_STRING += '\t\ttorch.__version__              = %s\n'%torch.__version__
    COMMON_STRING += '\t\ttorch.version.cuda             = %s\n'%torch.version.cuda
    COMMON_STRING += '\t\ttorch.backends.cudnn.version() = %s\n'%torch.backends.cudnn.version()
    try:
        COMMON_STRING += '\t\tos[\'CUDA_VISIBLE_DEVICES\']     = %s\n'%os.environ['CUDA_VISIBLE_DEVICES']
        NUM_CUDA_DEVICES = len(os.environ['CUDA_VISIBLE_DEVICES'].split(','))
    except Exception:
        COMMON_STRING += '\t\tos[\'CUDA_VISIBLE_DEVICES\']     = None\n'
        NUM_CUDA_DEVICES = 1

    COMMON_STRING += '\t\ttorch.cuda.device_count()      = %d\n'%torch.cuda.device_count()
    #print ('\t\ttorch.cuda.current_device()    =', torch.cuda.current_device())


COMMON_STRING += '\n'
if __name__ == '__main__':
    print (COMMON_STRING)

输出如下结果

matplotlib.get_backend :  TkAgg#这句是在import其他包输出的
@common.py:  
    set random seed
        SEED = 1571291014
    set cuda environment
        torch.__version__              = 1.2.0#torch1.2版本
        torch.version.cuda             = 10.0.130#cuda10.0
        torch.backends.cudnn.version() = 7602#cudnn版本7.6
        os['CUDA_VISIBLE_DEVICES']     = None
        torch.cuda.device_count()      = 1

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353