Model:
import tensorflow as tf
class FMModel:
def __init__(self,learning_rate,lambda_w,lambda_v,regular,k,p):
"""初始化成员变量"""
self.learning_rate = learning_rate #学习率
self.lambda_w = lambda_w #正则化参数
self.lambda_v = lambda_v #正则化参数
self.regular = regular # 正则项
self.k = k # v 的行数
self.p = p # 训练数据的列数
self.w0 = tf.Variable(tf.zeros([1]),name="w0") #FM 模型的常数项
self.w = tf.Variable(tf.random_normal([self.p]), name="w") #FM模型的线性部分的权重参数
self.v = tf.Variable(tf.random_normal([self.k,self.p],mean=0,stddev=0.01),name="v") # 交叉项的权重参数
def _create_placeholder(self):
""" 定义容易存储数据"""
with tf.name_scope("data"):
self.x = tf.placeholder(tf.float32, [None,self.p], name="x")
self.y = tf.placeholder(tf.float32, [None,1], name="y")
def _predict(self):
"""计算预测值"""
with tf.device('/cpu:0'):
with tf.name_scope("predict"):
self.y_hat = tf.add(tf.add(self.w0,tf.matmul(self.x,self.w)),
0.5*tf.reduce_sum(tf.subtract(tf.pow(tf.matmul(self.x,
tf.transpose(self.v)),2),tf.matmul(tf.pow(self.x,2),
tf.transpose(tf.pow(self.v,2))))),name="y_hat")
def _regular(self):
"""计算正则项"""
with tf.name_scope("regular"):
if self.regular == "l1":
l1_norm = tf.reduce_sum(
tf.add(
tf.multiply(self.lambda_w, tf.abs(self.w)),
tf.multiply(self.lambda_v, tf.abs(self.v))
))
return l1_norm
else:
l2_norm = tf.reduce_sum(
tf.add(
tf.multiply(self.lambda_w,tf.pow(self.w,2)),
tf.multiply(self.lambda_v, tf.pow(self.v,2))
)
)
return l2_norm
def _loss(self):
"""计算损失值"""
with tf.device('/cpu:0'):
with tf.name_scope("loss"):
norm = self._regular()
self.loss = tf.add(norm, tf.reduce_mean(tf.square(self.y-self.y_hat)))
def _optimizer(self):
""" 设定optimizer """
with tf.device('/cpu:0'):
with tf.name_scope("optimizer"):
self.opt = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
def _summaries(self):
""" 设定summary,以便在Tensorboard里进行可视化 """
with tf.name_scope("summaries"):
tf.summary.scalar("loss",self.loss)
tf.summary.histogram("histogram loss",self.loss)
self.summary_op = tf.summary.merge_all()
def build_graph(self):
""" 构建整个图的Graph """
self._create_placeholder()
self._predict()
self._loss()
self._optimizer()
self._summaries()
模型训练后续更新···············