can的波特率

can的波特率

can控制器只需要进行少量的设置就可以进行通信,就像RS232那样。其中较难设置的部分就是通信波特率的计算。can总线能够在一定范围内容忍总线上can节点的通信波特率的偏差,这种技能使得can总线有很强的容错性,同时也降低了对每个节点的振荡器精度。

实际上,can总线的波特率是一个范围。假设定义的波特率是250KB/S,但是实际上根据对寄存器的设置,实际的波特率可能为200-300KB/S(具体取决于寄存器的设置)。

简单介绍一下波特率的计算,在can的底层协议里将can数据的每一位时间(TBit)分为许多的时间段(Tscl),这些时间段包括:位同步时间Tsync,时间段1Tseg1,时间段2Tseg2.

其中位同步时间占用1个Tscl;,时间段1占用(Tseg1+1)个Tscl;时间段2占用Tseg2+1个Tscl,所以can控制器的位时间TBit就是:

TBit = Tseg1+Tseg2+Tsync=(Tseg1+Tseg2+3)*Tscl,那么can的波特率canbps就是1/TBit。

但是这样计算出的值是一个理论值。在实际的网络通信中由于存在传输的延时,不同节点的晶体的误差等因数,使得网络can的波特率的计算变得复杂起来。can在技术上引入了重同步的概念,以更好的解决这些问题。

这样重同步带来的结果就是要么时间段1(Tseg1)增加TSJW(同步跳转宽度SJW+1),要么时间段减少TSJW,因此can的波特率实际上有一个范围:

1/(TBit+TSJW) <= CANbps <= 1/(TBit-TSJW)

CAN波特率的值由以下几个元素决定:

1. 最小时间段Tscl

2. 时间段1  Tseg1

3. 时间段2  Tseg2

4. 同步跳转宽度 SJW

那么Tscl是怎么计算的呢?

这是总线时序寄存器中的预分频寄存器BRP派上了用场,Tscl = (BRP+1)/FVBP,FVBP为微处理器的外设时钟。

tscl = pclk。

Tseg1和Tseg2又是怎么划分的呢?

Tseg1和Tseg2的长度决定了CAN数据的采样点,这种方式允许宽范围的数据传输延迟和晶体的误差。其中Tseg1用来调整数据传输延迟时间造成的误差,而Tseg2则用来调整不同点节点晶体频率的误差。

但是他们由于过于灵活,而使初次接触CAN的人有点无所适从。TSEG1与TSEG2的是分大体遵循以下规则: Tseg2≥Tscl2,Tseg2≥2TSJW,Tseg1≥Tseg2

总的来说,对于CAN的波特率计算问题,把握一个大的方向就行了,其计算公式可了规结为: BitRate = Fpclk/( (BRP+1) * ((Tseg1+1)+(Tseg2+1)+1)

最后,我们来说说如何计算波特率。

can总线有两个总线时钟寄存器BTR0、BTR1。


can系统时钟公式:

tscl = 2*tclk*(32*BRP.5 + 16*BRP.4 + 8*BRP.3 + 4*BRP.2 + 2*BRP.1 +BRP.0 + 1)

其中tclk=1/晶振频率=pclk。

同步跳转宽度:

Tsjw = “tscl”*(2*SJW.1 + SJW.0 + 1)

位周期T

TBit = Tseg1+Tseg2+Tsync=(Tseg1+Tseg2+3)*Tscl

Tseg1 = tscl*(8*TSEG1.3 + 4*TSEG1.2 +2*TSEG1.1 + TSEG1.0 + 1)

Tseg2 = tscl*(4*TSEG2.2 +2*TSEG2.1 + TSEG2.0 + 1)

CAN波特率=APB总线频率/BRP分频器/(1+tBS1+tBS2)。

比如:

总线时钟寄存器BTR0:0x2,;总线时钟寄存器BTR1:0x14。

TBit = tscl(1+5+2)=8tscl

tscl = 2tclk*(3) = 6tclk

TBit =48tclk

tclk = 1/48000000

TBit = 1/1000000

即can的波特率canbps就是1/TBit=1MHz。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容