一文理解:Java NIO 核心组件

背景知识

同步、异步、阻塞、非阻塞

首先,这几个概念非常容易搞混淆,但NIO中又有涉及,所以总结一下。

  • 同步:API调用返回时调用者就知道操作的结果如何了(实际读取/写入了多少字节)。
  • 异步:相对于同步,API调用返回时调用者不知道操作的结果,后面才会回调通知结果。
  • 阻塞:当无数据可读,或者不能写入所有数据时,挂起当前线程等待。
  • 非阻塞:读取时,可以读多少数据就读多少然后返回,写入时,可以写入多少数据就写入多少然后返回。

对于I/O操作,根据Oracle官网的文档,同步异步的划分标准是“调用者是否需要等待I/O操作完成”,这个“等待I/O操作完成”的意思不是指一定要读取到数据或者说写入所有数据,而是指真正进行I/O操作时,比如数据在TCP/IP协议栈缓冲区和JVM缓冲区之间传输的这段时间,调用者是否要等待。

所以,我们常用的 read() 和 write() 方法都是同步I/O,同步I/O又分为阻塞和非阻塞两种模式,如果是非阻塞模式,检测到无数据可读时,直接就返回了,并没有真正执行I/O操作。

总结就是,Java中实际上只有 同步阻塞I/O、同步非阻塞I/O 与 异步I/O 三种机制,我们下文所说的是前两种,JDK 1.7才开始引入异步 I/O,那称之为NIO.2。

传统IO

我们知道,一个新技术的出现总是伴随着改进和提升,Java NIO的出现亦如此。

传统 I/O 是阻塞式I/O,主要问题是系统资源的浪费。比如我们为了读取一个TCP连接的数据,调用 InputStream 的 read() 方法,这会使当前线程被挂起,直到有数据到达才被唤醒,那该线程在数据到达这段时间内,占用着内存资源(存储线程栈)却无所作为,也就是俗话说的占着茅坑不拉屎,为了读取其他连接的数据,我们不得不启动另外的线程。在并发连接数量不多的时候,这可能没什么问题,然而当连接数量达到一定规模,内存资源会被大量线程消耗殆尽。另一方面,线程切换需要更改处理器的状态,比如程序计数器、寄存器的值,因此非常频繁的在大量线程之间切换,同样是一种资源浪费。

随着技术的发展,现代操作系统提供了新的I/O机制,可以避免这种资源浪费。基于此,诞生了Java NIO,NIO的代表性特征就是非阻塞I/O。紧接着我们发现,简单的使用非阻塞I/O并不能解决问题,因为在非阻塞模式下,read()方法在没有读取到数据时就会立即返回,不知道数据何时到达的我们,只能不停的调用read()方法进行重试,这显然太浪费CPU资源了,从下文可以知道,Selector组件正是为解决此问题而生。

Java NIO 核心组件

1.Channel

概念

Java NIO中的所有I/O操作都基于Channel对象,就像流操作都要基于Stream对象一样,因此很有必要先了解Channel是什么。以下内容摘自JDK 1.8的文档

A channel represents an open connection to an entity such as a hardware device, a file, a network socket, or a program component that is capable of performing one or more distinct I/O operations, for example reading or writing.

从上述内容可知,一个Channel(通道)代表和某一实体的连接,这个实体可以是文件、网络套接字等。也就是说,通道是Java NIO提供的一座桥梁,用于我们的程序和操作系统底层I/O服务进行交互。

通道是一种很基本很抽象的描述,和不同的I/O服务交互,执行不同的I/O操作,实现不一样,因此具体的有FileChannel、SocketChannel等。加群895244712,免费获取Java架构师进阶学习资料

通道使用起来跟Stream比较像,可以读取数据到Buffer中,也可以把Buffer中的数据写入通道。

当然,也有区别,主要体现在如下两点:

  • 一个通道,既可以读又可以写,而一个Stream是单向的(所以分 InputStream 和 OutputStream)
  • 通道有非阻塞I/O模式

实现

Java NIO中最常用的通道实现是如下几个,可以看出跟传统的 I/O 操作类是一一对应的。

  • FileChannel:读写文件
  • DatagramChannel: UDP协议网络通信
  • SocketChannel:TCP协议网络通信
  • ServerSocketChannel:监听TCP连接

2.Buffer

NIO中所使用的缓冲区不是一个简单的byte数组,而是封装过的Buffer类,通过它提供的API,我们可以灵活的操纵数据,下面细细道来。

与Java基本类型相对应,NIO提供了多种 Buffer 类型,如ByteBuffer、CharBuffer、IntBuffer等,区别就是读写缓冲区时的单位长度不一样(以对应类型的变量为单位进行读写)。

Buffer中有3个很重要的变量,它们是理解Buffer工作机制的关键,分别是

  • capacity (总容量)
  • position (指针当前位置)
  • limit (读/写边界位置)

Buffer的工作方式跟C语言里的字符数组非常的像,类比一下,capacity就是数组的总长度,position就是我们读/写字符的下标变量,limit就是结束符的位置。Buffer初始时3个变量的情况如下图

在对Buffer进行读/写的过程中,position会往后移动,而 limit 就是 position 移动的边界。由此不难想象,在对Buffer进行写入操作时,limit应当设置为capacity的大小,而对Buffer进行读取操作时,limit应当设置为数据的实际结束位置。(注意:将Buffer数据 写入 通道是Buffer 读取 操作,从通道 读取 数据到Buffer是Buffer 写入 操作)

在对Buffer进行读/写操作前,我们可以调用Buffer类提供的一些辅助方法来正确设置 position 和 limit 的值,主要有如下几个

  • flip(): 设置 limit 为 position 的值,然后 position 置为0。对Buffer进行读取操作前调用。
  • rewind(): 仅仅将 position 置0。一般是在重新读取Buffer数据前调用,比如要读取同一个Buffer的数据写入多个通道时会用到。
  • clear(): 回到初始状态,即 limit 等于 capacity,position 置0。重新对Buffer进行写入操作前调用。
  • compact(): 将未读取完的数据(position 与 limit 之间的数据)移动到缓冲区开头,并将 position 设置为这段数据末尾的下一个位置。其实就等价于重新向缓冲区中写入了这么一段数据。

然后,看一个实例,使用 FileChannel 读写文本文件,通过这个例子验证通道可读可写的特性以及Buffer的基本用法(注意 FileChannel 不能设置为非阻塞模式)。

    FileChannel channel = new RandomAccessFile("test.txt", "rw").getChannel();
    channel.position(channel.size());  // 移动文件指针到末尾(追加写入)
    
    ByteBuffer byteBuffer = ByteBuffer.allocate(20);
    
    // 数据写入Buffer
    byteBuffer.put("你好,世界!\n".getBytes(StandardCharsets.UTF_8));
 
    // Buffer -> Channel
    byteBuffer.flip();
    while (byteBuffer.hasRemaining()) {
        channel.write(byteBuffer);
    }
 
    channel.position(0); // 移动文件指针到开头(从头读取)
    CharBuffer charBuffer = CharBuffer.allocate(10);
    CharsetDecoder decoder = StandardCharsets.UTF_8.newDecoder();
 
    // 读出所有数据
    byteBuffer.clear();
    while (channel.read(byteBuffer) != -1 || byteBuffer.position() > 0) {
        byteBuffer.flip();
 
        // 使用UTF-8解码器解码
        charBuffer.clear();
        decoder.decode(byteBuffer, charBuffer, false);
        System.out.print(charBuffer.flip().toString());
 
        byteBuffer.compact(); // 数据可能有剩余
    }
    加群895244712,免费获取Java架构师进阶学习资料
    channel.close();

这个例子中使用了两个Buffer,其中 byteBuffer 作为通道读写的数据缓冲区,charBuffer 用于存储解码后的字符。clear() 和 flip() 的用法正如上文所述,需要注意的是最后那个 compact() 方法,即使 charBuffer 的大小完全足以容纳 byteBuffer 解码后的数据,这个 compact() 也必不可少,这是因为常用中文字符的UTF-8编码占3个字节,因此有很大概率出现在中间截断的情况,请看下图:

当 Decoder 读取到缓冲区末尾的 0xe4 时,无法将其映射到一个 Unicode,decode()方法第三个参数 false 的作用就是让 Decoder 把无法映射的字节及其后面的数据都视作附加数据,因此 decode() 方法会在此处停止,并且 position 会回退到 0xe4 的位置。如此一来, 缓冲区中就遗留了“中”字编码的第一个字节,必须将其 compact 到前面,以正确的和后序数据拼接起来。

BTW,例子中的 CharsetDecoder 也是 Java NIO 的一个新特性,所以大家应该发现了一点哈,NIO的操作是面向缓冲区的(传统I/O是面向流的)。

至此,我们了解了 Channel 与 Buffer 的基本用法。接下来要说的是让一个线程管理多个Channel的重要组件。

3.Selector

Selector 是什么

Selector(选择器)是一个特殊的组件,用于采集各个通道的状态(或者说事件)。我们先将通道注册到选择器,并设置好关心的事件,然后就可以通过调用select()方法,静静地等待事件发生。

通道有如下4个事件可供我们监听:

  • Accept:有可以接受的连接
  • Connect:连接成功
  • Read:有数据可读
  • Write:可以写入数据了

为什么要用Selector

前文说了,如果用阻塞I/O,需要多线程(浪费内存),如果用非阻塞I/O,需要不断重试(耗费CPU)。Selector的出现解决了这尴尬的问题,非阻塞模式下,通过Selector,我们的线程只为已就绪的通道工作,不用盲目的重试了。比如,当所有通道都没有数据到达时,也就没有Read事件发生,我们的线程会在select()方法处被挂起,从而让出了CPU资源。

使用方法

如下所示,创建一个Selector,并注册一个Channel。

注意:要将 Channel 注册到 Selector,首先需要将 Channel 设置为非阻塞模式,否则会抛异常。

Selector selector = Selector.open();
channel.configureBlocking(false);
SelectionKey key = channel.register(selector, SelectionKey.OP_READ);

register()方法的第二个参数名叫“interest set”,也就是你所关心的事件集合。如果你关心多个事件,用一个“按位或运算符”分隔,比如

SelectionKey.OP_READ | SelectionKey.OP_WRITE

这种写法一点都不陌生,支持位运算的编程语言里都这么玩,用一个整型变量可以标识多种状态,它是怎么做到的呢,其实很简单,举个例子,首先预定义一些常量,它们的值(二进制)如下

可以发现,它们值为1的位都是错开的,因此对它们进行按位或运算之后得出的值就没有二义性,可以反推出是由哪些变量运算而来。怎么判断呢,没错,就是“按位与”运算。比如,现在有一个状态集合变量值为 0011,我们只需要判断 "0011 & OP_READ" 的值是 1 还是 0 就能确定集合是否包含 OP_READ 状态。

然后,注意 register() 方法返回了一个SelectionKey的对象,这个对象包含了本次注册的信息,我们也可以通过它修改注册信息。从下面完整的例子中可以看到,select()之后,我们也是通过获取一个 SelectionKey 的集合来获取到那些状态就绪了的通道。

一个完整实例

概念和理论的东西阐述完了(其实写到这里,我发现没写出多少东西,好尴尬(⊙ˍ⊙)),看一个完整的例子吧。

这个例子使用Java NIO实现了一个单线程的服务端,功能很简单,监听客户端连接,当连接建立后,读取客户端的消息,并向客户端响应一条消息。

需要注意的是,我用字符 '\0'(一个值为0的字节) 来标识消息结束。

单线程Server

public class NioServer {
    
    public static void main(String[] args) throws IOException {
        // 创建一个selector
        Selector selector = Selector.open();
        
        // 初始化TCP连接监听通道
        ServerSocketChannel listenChannel = ServerSocketChannel.open();
        listenChannel.bind(new InetSocketAddress(9999));
        listenChannel.configureBlocking(false);
        // 注册到selector(监听其ACCEPT事件)
        listenChannel.register(selector, SelectionKey.OP_ACCEPT);
        
        // 创建一个缓冲区
        ByteBuffer buffer = ByteBuffer.allocate(100);
        
        while (true) {
            selector.select(); //阻塞,直到有监听的事件发生
            Iterator<SelectionKey> keyIter = selector.selectedKeys().iterator();
            
            // 通过迭代器依次访问select出来的Channel事件
            while (keyIter.hasNext()) {
                SelectionKey key = keyIter.next();
                
                if (key.isAcceptable()) { // 有连接可以接受
                    SocketChannel channel = ((ServerSocketChannel) key.channel()).accept();
                    channel.configureBlocking(false);
                    channel.register(selector, SelectionKey.OP_READ);
                    
                    System.out.println("与【" + channel.getRemoteAddress() + "】建立了连接!");
                    
                } else if (key.isReadable()) { // 有数据可以读取
                    buffer.clear();
    
                    // 读取到流末尾说明TCP连接已断开,
                    // 因此需要关闭通道或者取消监听READ事件
                    // 否则会无限循环
                    if (((SocketChannel) key.channel()).read(buffer) == -1) {
                        key.channel().close();
                        continue;
                    } 
                    
                    // 按字节遍历数据
                    buffer.flip();
                    while (buffer.hasRemaining()) {
                        byte b = buffer.get();
                        
                        if (b == 0) { // 客户端消息末尾的\0
                            System.out.println();
                            
                            // 响应客户端
                            buffer.clear();
                            buffer.put("Hello, Client!\0".getBytes());
                            buffer.flip();
                            while (buffer.hasRemaining()) {
                                ((SocketChannel) key.channel()).write(buffer);
                            }
                        } else {
                            System.out.print((char) b);
                        }
                    }
                }
                
                // 已经处理的事件一定要手动移除
                keyIter.remove();
            }
        }
    }
}

Client

这个客户端纯粹测试用,为了看起来不那么费劲,就用传统的写法了,代码很简短。

要严谨一点测试的话,应该并发运行大量Client,统计服务端的响应时间,而且连接建立后不要立刻发送数据,这样才能发挥出服务端非阻塞I/O的优势。

public class Client {
    
    public static void main(String[] args) throws Exception {
        Socket socket = new Socket("localhost", 9999);
        InputStream is = socket.getInputStream();
        OutputStream os = socket.getOutputStream();
 
        // 先向服务端发送数据
        os.write("Hello, Server!\0".getBytes());
        
        // 读取服务端发来的数据
        int b;
        while ((b = is.read()) != 0) {
            System.out.print((char) b);
        }
        System.out.println();
        
        socket.close();
    }
}

NIO vs IO

学习了NIO之后我们都会有这样一个疑问:到底什么时候该用NIO,什么时候该用传统的I/O呢?

其实了解他们的特性后,答案还是比较明确的,NIO擅长1个线程管理多条连接,节约系统资源,但是如果每条连接要传输的数据量很大的话,因为是同步I/O,会导致整体的响应速度很慢;而传统I/O为每一条连接创建一个线程,能充分利用处理器并行处理的能力,但是如果连接数量太多,内存资源会很紧张。加群895244712,免费获取Java架构师进阶学习资料

总结就是:连接数多数据量小用NIO,连接数少用I/O(写起来也简单- -)。

Next

经过NIO核心组件的学习,了解了非阻塞服务端实现的基本方法。然而,细心的你们肯定也发现了,上面那个完整的例子,实际上就隐藏了很多问题。比如,例子中只是简单的将读取到的每个字节输出,实际环境中肯定是要读取到完整的消息后才能进行下一步处理,由于NIO的非阻塞特性,一次可能只读取到消息的一部分,这已经很糟糕了,如果同一条连接会连续发来多条消息,那不仅要对消息进行拼接,还需要切割,同理,例子中给客户端响应的时候,用了个while()循环,保证数据全部write完成再做其它工作,实际应用中为了性能,肯定不会这么写。另外,为了充分利用现代处理器多核心并行处理的能力,应该用一个线程组来管理这些连接的事件。

要解决这些问题,需要一个严谨而繁琐的设计,不过幸运的是,我们有开源的框架可用,那就是优雅而强大的Netty,Netty基于Java NIO,提供异步调用接口,开发高性能服务器的一个很好的选择,之前在项目中使用过,但没有深入学习,打算下一步好好学学它,到时候再写一篇笔记。

Java NIO设计的目标是为程序员提供API以享受现代操作系统最新的I/O机制,所以覆盖面较广,除了文中所涉及的组件与特性,还有很多其它的,比如 Pipe(管道)、Path(路径)、Files(文件) 等,有的是用于提升I/O性能的新组件,有的是简化I/O操作的工具,具体用法可以参看最后 References 里的链接。

References

[1] Differences Between Synchronous and Asynchronous I/O

[2] Java NIO - Wikipedia

[3] Java NIO Tutorial

[4] Package java.nio

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容