[5/50] #Financial Mathematics# Summary 1 for Calculus for Finance: Volume 2: Continuous-time Model

Today I want to spend the whole morning to do a summary for the book Stochastic Calculus for Finance Volume 2: Continuous-time model. I just want to provide some information about this book for those people who interest in the Financial Mathematics.


Initially, I want to introduce my background of Mathematics and Financial Mathematics. Following are part of books I have read about and related to this book. 

Real Analysis & Complex Analysis written by stein (Various concepts of real and complex analysis and some Heuristic examples for Functional Analysis).

PDE & SDE written by Evans (Most important book for learning PDE theory, elementary book for learning SDE).

A Course in Financial Calculus (The textbook for my Financial Mathematics course).

Next, I want to list some advantages for this book (Personal View).

A1: How to introduce the concept of probability space into Probability theory?

As we know, the most important concept in modern probability theory is to introduce the probability space, and consider about the probability as on kind of measure.

This kind of idea is wonderful, but still pretty tough for me to understand at the first time. So I need motivation. I love the understanding by Evans (I always love his books) in SDE, and I also love the motivation to define the probability spaces in this book.

(Not for citation, just for emphasize.)

In classical probability theory, we know how to compute the event A,

Pr(A) = Pr(w1) + Pr(w2) + .... + P(wn) for all wi belongs to A.

We note that this formula only useful along with the at most countable infinity sample spaces. Because at the uncountable infinity sample spaces, the probability of any simple outcome is zero. Alternatively, we cannot determine the Pr(A) by sum up the Pr(element belongs to A).

This problem motivated us to define the probability spaces (Sample space, sigma-algebra, probability measure) so as to compute the probability of complicated events in uncountable infinity sample spaces.

For more information and heuristic examples, please look at the book.

A2: How to define the Ito's integral?

I think the second advantage in this book is the process to define the Ito's integral. I recall the process to define the Lebesgue integral the Real Analysis,

Characteristic function -> Simple function -> Bounded and supported in the compact set -> non-negative function -> general function

And this process generated two convergence theorems. i.e. Monotone convergence theorem and Dominated convergence theorem. 

Likewise, Steven used the same argument to define the Ito's integral. He also started with the Ito's integral for simple stochastic processes, then used the convergence theorem to define the integral for general stochastic processes (take the limit for the simple processes)

I love this way to define the Ito's integral, because it connects the Lebesgue integral, Approximation theory (convergence theorems). However, the approximation theory in this book is rough. Precisely, how to prove that a general process can be approximated by a sequence of simple processes is unclear.

A3: To generate the Black-Scholes Equation: pricing for option by Hedge

In this book, Steven derived the Black-Scholes Equation for price of an option on an asset modeled as a geometric Brownian motion. I love it! Some book just introduce this equation in discrete case (also in Volume 1), but I think the continuous-time model is much more interesting,

Hedge:

Evolution of Portfolio Value  =  Discounted Stock Price and Portfolio

Using this equation, we will get a PDE, then solve this PDE by Fourier transform.

However, how to transform the BS equation to a diffusion equation (heat equation) and solve this equation by Fourier transform is unclear in this book (but can be found very easy in Google). 


I just read a part of this book, and found this book is wonderful and powerful. I want to do the summary 2 when I am free. 

FYI.


Eric

Feb. 11th

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容