《Pandas 1.x Cookbook · 第二版》第08章 索引对齐

第01章 Pandas基础
第02章 DataFrame基础运算
第03章 创建和持久化DataFrame
第04章 开始数据分析
第05章 探索性数据分析
第06章 选取数据子集
第07章 过滤行
第08章 索引对齐


8.1 检查索引对象

读取大学数据集,用变量columns存储列索引:

>>> import pandas as pd
>>> import numpy as np
>>> college = pd.read_csv("data/college.csv")
>>> columns = college.columns
>>> columns
Index(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL',
       'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS', 'UGDS_WHITE',
       'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 'UGDS_AIAN', 'UGDS_NHPI',
       'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_EF', 'CURROPER', 'PCTPELL',
       'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP'],
      dtype='object')

.values属性获取底层的NumPy数组:

>>> columns.values
array(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY',
       'RELAFFIL', 'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS',
       'UGDS_WHITE', 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 'UGDS_AIAN',
       'UGDS_NHPI', 'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_EF',
       'CURROPER', 'PCTPELL', 'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_P10',
       'GRAD_DEBT_MDN_SUPP'], dtype=object)

用标量、列表和切片从columns提取数据:

>>> columns[5]
'WOMENONLY'
>>> columns[[1, 8, 10]]
Index(['CITY', 'SATMTMID', 'UGDS'], dtype='object')
>>> columns[-7:-4]
Index(['PPTUG_EF', 'CURROPER', 'PCTPELL'], dtype='object')

索引对象和Series和DataFrames有公用的方法:

>>> columns.min(), columns.max(), columns.isnull().sum()
('CITY', 'WOMENONLY', 0)

索引对象支持运算和比较:

>>> columns + "_A"
Index(['INSTNM_A', 'CITY_A', 'STABBR_A', 'HBCU_A', 'MENONLY_A',
'WOMENONLY_A',
       'RELAFFIL_A', 'SATVRMID_A', 'SATMTMID_A', 'DISTANCEONLY_A', 'UGDS_A',
       'UGDS_WHITE_A', 'UGDS_BLACK_A', 'UGDS_HISP_A', 'UGDS_ASIAN_A',
       'UGDS_AIAN_A', 'UGDS_NHPI_A', 'UGDS_2MOR_A', 'UGDS_NRA_A',
       'UGDS_UNKN_A', 'PPTUG_EF_A', 'CURROPER_A', 'PCTPELL_A', 'PCTFLOAN_A',
       'UG25ABV_A', 'MD_EARN_WNE_P10_A', 'GRAD_DEBT_MDN_SUPP_A'],
      dtype='object')
>>> columns > "G"
array([ True, False,  True,  True,  True,  True,  True,  True,  True,
       False,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True, False,  True,  True,  True,  True,  True])

索引是不可变对象:

>>> columns[1] = "city"
Traceback (most recent call last):
  ...
TypeError: Index does not support mutable operations

更多

索引支持集合运算:

>>> c1 = columns[:4]
>>> c1
Index(['INSTNM', 'CITY', 'STABBR', 'HBCU'], dtype='object')
>>> c2 = columns[2:6]
>>> c2
Index(['STABBR', 'HBCU', 'MENONLY', 'WOMENONLY'], dtype='object')
>>> c1.union(c2)  # or 'c1 | c2'
Index(['CITY', 'HBCU', 'INSTNM', 'MENONLY', 'STABBR', 'WOMENONLY'],
dtype='object')
>>> c1.symmetric_difference(c2)  # or 'c1 ^ c2'
Index(['CITY', 'INSTNM', 'MENONLY', 'WOMENONLY'], dtype='object')

8.2 生成笛卡尔积

创建两个部分相同的Series:

>>> s1 = pd.Series(index=list("aaab"), data=np.arange(4))
>>> s1
a    0
a    1
a    2
b    3
dtype: int64
>>> s2 = pd.Series(index=list("cababb"), data=np.arange(6))
>>> s2
c    0
a    1
b    2
a    3
b    4
b    5
dtype: int64

将这两个Series相加,就生成了笛卡尔积:

>>> s1 + s2
a    1.0
a    3.0
a    2.0
a    4.0
a    3.0
a    5.0
b    5.0
b    7.0
b    8.0
c    NaN
dtype: float64

更多

如果索引相同,顺序也一致,就不会生成笛卡尔积:

>>> s1 = pd.Series(index=list("aaabb"), data=np.arange(5))
>>> s2 = pd.Series(index=list("aaabb"), data=np.arange(5))
>>> s1 + s2
a    0
a    2
a    4
b    6
b    8
dtype: int64

如果索引中的元素相同,但顺序不一致,也会产生笛卡尔积:

>>> s1 = pd.Series(index=list("aaabb"), data=np.arange(5))
>>> s2 = pd.Series(index=list("bbaaa"), data=np.arange(5))
>>> s1 + s2
a    2
a    3
a    4
a    3
a    4
    ..
a    6
b    3
b    4
b    4
b    5
Length: 13, dtype: int64

如果索引的顺序不同,但没有重复对象,则不会生成笛卡尔积:

>>> s3 = pd.Series(index=list("ab"), data=np.arange(2))
>>> s4 = pd.Series(index=list("ba"), data=np.arange(2))
>>> s3 + s4
a    1
b    1
dtype: int64

8.3 索引爆炸

读取员工数据集:

>>> employee = pd.read_csv(
...     "data/employee.csv", index_col="RACE"
... )
>>> employee.head()
              UNIQUE_ID POSITION_TITLE  ...   HIRE_DATE    JOB_DATE
RACE                                    ...                        
Hispanic/...          0  ASSISTAN...    ...  2006-06-12  2012-10-13
Hispanic/...          1  LIBRARY ...    ...  2000-07-19  2010-09-18
White                 2  POLICE O...    ...  2015-02-03  2015-02-03
White                 3  ENGINEER...    ...  1982-02-08  1991-05-25
White                 4  ELECTRICIAN    ...  1989-06-19  1994-10-22

判断下面两个对象是否等价:

>>> salary1 = employee["BASE_SALARY"]
>>> salary2 = employee["BASE_SALARY"]
>>> salary1 is salary2
True

这两个对象指向相同,如果要做一个全新的对象,需要使用.copy方法:

>>> salary2 = employee["BASE_SALARY"].copy()
>>> salary1 is salary2
False

改变一个索引的顺序:

>>> salary1 = salary1.sort_index()
>>> salary1.head()
RACE
American Indian or Alaskan Native    78355.0
American Indian or Alaskan Native    26125.0
American Indian or Alaskan Native    98536.0
American Indian or Alaskan Native        NaN
American Indian or Alaskan Native    55461.0
Name: BASE_SALARY, dtype: float64
>>> salary2.head()
RACE
Hispanic/Latino    121862.0
Hispanic/Latino     26125.0
White               45279.0
White               63166.0
White               56347.0
Name: BASE_SALARY, dtype: float64

将两个Series相加:

>>> salary_add = salary1 + salary2
>>> salary_add.head()
RACE
American Indian or Alaskan Native    138702.0
American Indian or Alaskan Native    156710.0
American Indian or Alaskan Native    176891.0
American Indian or Alaskan Native    159594.0
American Indian or Alaskan Native    127734.0
Name: BASE_SALARY, dtype: float64

为了对比,再创建一个salary_add1,比较这几个Series的长度:

# 索引顺序不同时,产生了笛卡尔积
>>> salary_add1 = salary1 + salary1
>>> len(salary1), len(salary2), len(salary_add), len(
...     salary_add1
... )
(2000, 2000, 1175424, 2000)

更多

笛卡尔积的数量是可以计算的:

>>> index_vc = salary1.index.value_counts(dropna=False)
>>> index_vc
Black or African American            700
White                                665
Hispanic/Latino                      480
Asian/Pacific Islander               107
NaN                                   35
American Indian or Alaskan Native     11
Others                                 2
Name: RACE, dtype: int64
>>> index_vc.pow(2).sum()
1175424

8.4 用不等索引填充值

读取三个棒球数据集:

>>> baseball_14 = pd.read_csv(
...     "data/baseball14.csv", index_col="playerID"
... )
>>> baseball_15 = pd.read_csv(
...     "data/baseball15.csv", index_col="playerID"
... )
>>> baseball_16 = pd.read_csv(
...     "data/baseball16.csv", index_col="playerID"
... )
>>> baseball_14.head()
           yearID  stint teamID lgID  ...  HBP   SH   SF  GIDP
playerID                              ...
altuvjo01    2014      1    HOU   AL  ...  5.0  1.0  5.0  20.0
cartech02    2014      1    HOU   AL  ...  5.0  0.0  4.0  12.0
castrja01    2014      1    HOU   AL  ...  9.0  1.0  3.0  11.0
corpoca01    2014      1    HOU   AL  ...  3.0  1.0  2.0   3.0
dominma01    2014      1    HOU   AL  ...  5.0  2.0  7.0  23.0

检查哪些索引位于baseball_14而不在baseball_15中:

>>> baseball_14.index.difference(baseball_15.index)
Index(['corpoca01', 'dominma01', 'fowlede01', 'grossro01', 'guzmaje01',
       'hoeslj01', 'krausma01', 'preslal01', 'singljo02'],
      dtype='object', name='playerID')
>>> baseball_15.index.difference(baseball_14.index)
Index(['congeha01', 'correca01', 'gattiev01', 'gomezca01', 'lowrije01',
       'rasmuco01', 'tuckepr01', 'valbulu01'],
      dtype='object', name='playerID')

查询每名选手的击球数:

>>> hits_14 = baseball_14["H"]
>>> hits_15 = baseball_15["H"]
>>> hits_16 = baseball_16["H"]
>>> hits_14.head()
playerID
altuvjo01    225
cartech02    115
castrja01    103
corpoca01     40
dominma01    121
Name: H, dtype: int64

将两列相加:

>>> (hits_14 + hits_15).head()
playerID
altuvjo01    425.0
cartech02    193.0
castrja01    174.0
congeha01      NaN
corpoca01      NaN
Name: H, dtype: float64

发现有缺失值,使用fill_value来填充:

>>> hits_14.add(hits_15, fill_value=0).head()
playerID
altuvjo01    425.0
cartech02    193.0
castrja01    174.0
congeha01     46.0
corpoca01     40.0
Name: H, dtype: float64

在加上hits_16

>>> hits_total = hits_14.add(hits_15, fill_value=0).add(
...     hits_16, fill_value=0
... )
>>> hits_total.head()
playerID
altuvjo01    641.0
bregmal01     53.0
cartech02    193.0
castrja01    243.0
congeha01     46.0
Name: H, dtype: float64

检查是否有缺失值:

>>> hits_total.hasnans
False

更多

DataFrame在相加时,也支持填充:

>>> df_14 = baseball_14[["G", "AB", "R", "H"]]
>>> df_14.head()
             G   AB   R    H
playerID                    
altuvjo01  158  660  85  225
cartech02  145  507  68  115
castrja01  126  465  43  103
corpoca01   55  170  22   40
dominma01  157  564  51  121

>>> df_15 = baseball_15[["AB", "R", "H", "HR"]]
>>> df_15.head()
            AB   R    H  HR
playerID                   
altuvjo01  638  86  200  15
cartech02  391  50   78  24
castrja01  337  38   71  11
congeha01  201  25   46  11
correca01  387  52  108  22

8.5 从不同的DataFrame添加列

读取数据集:

>>> employee = pd.read_csv("data/employee.csv")
>>> dept_sal = employee[["DEPARTMENT", "BASE_SALARY"]]

对值进行排序:

>>> dept_sal = dept_sal.sort_values(
...     ["DEPARTMENT", "BASE_SALARY"],
...     ascending=[True, False],
... )

DEPARTMENT列进行去重:

>>> max_dept_sal = dept_sal.drop_duplicates(
...     subset="DEPARTMENT"
... )
>>> max_dept_sal.head()
       DEPARTMENT  BASE_SALARY
                        DEPARTMENT  BASE_SALARY
1494    Admn. & Regulatory Affairs     140416.0
149       City Controller's Office      64251.0
236                   City Council     100000.0
647   Convention and Entertainment      38397.0
1500   Dept of Neighborhoods (DON)      89221.0

将列DEPARTMENT作为行索引:

>>> max_dept_sal = max_dept_sal.set_index("DEPARTMENT")
>>> employee = employee.set_index("DEPARTMENT")

employee添加一个新列:

>>> employee = employee.assign(
...     MAX_DEPT_SALARY=max_dept_sal["BASE_SALARY"]
... )
>>> employee
                               UNIQUE_ID  ... MAX_D/ALARY
DEPARTMENT                                ...
Municipal Courts Department            0  ...    121862.0
Library                                1  ...    107763.0
Houston Police Department-HPD          2  ...    199596.0
Houston Fire Department (HFD)          3  ...    210588.0
General Services Department            4  ...     89194.0
...                                  ...  ...         ...
Houston Police Department-HPD       1995  ...    199596.0
Houston Fire Department (HFD)       1996  ...    210588.0
Houston Police Department-HPD       1997  ...    199596.0
Houston Police Department-HPD       1998  ...    199596.0
Houston Fire Department (HFD)       1999  ...    210588.0

用query方法检查是否存在BASE_SALARY高于MAX_DEPT_SALARY的行:

>>> employee.query("BASE_SALARY > MAX_DEPT_SALARY")
Empty DataFrame
Columns: [UNIQUE_ID, POSITION_TITLE, BASE_SALARY, RACE, EMPLOYMENT_TYPE, GENDER, EMPLOYMENT_STATUS, HIRE_DATE, JOB_DATE, MAX_DEPT_SALARY]
Index: []

将前面的方法组合成链式方法:

>>> employee = pd.read_csv("data/employee.csv")
>>> max_dept_sal = (
...     employee
...     [["DEPARTMENT", "BASE_SALARY"]]
...     .sort_values(
...         ["DEPARTMENT", "BASE_SALARY"],
...         ascending=[True, False],
...     )
...     .drop_duplicates(subset="DEPARTMENT")
...     .set_index("DEPARTMENT")
... )
>>> (
...     employee
...     .set_index("DEPARTMENT")
...     .assign(
...         MAX_DEPT_SALARY=max_dept_sal["BASE_SALARY"]
...     )
... )
              UNIQUE_ID POSITION_TITLE  ...    JOB_DATE MAX_DEPT_SALARY
DEPARTMENT                              ...
Municipal...          0  ASSISTAN...    ...  2012-10-13     121862.0
Library               1  LIBRARY ...    ...  2010-09-18     107763.0
Houston P...          2  POLICE O...    ...  2015-02-03     199596.0
Houston F...          3  ENGINEER...    ...  1991-05-25     210588.0
General S...          4  ELECTRICIAN    ...  1994-10-22      89194.0
...                 ...          ...    ...         ...          ...
Houston P...       1995  POLICE O...    ...  2015-06-09     199596.0
Houston F...       1996  COMMUNIC...    ...  2013-10-06     210588.0
Houston P...       1997  POLICE O...    ...  2015-10-13     199596.0
Houston P...       1998  POLICE O...    ...  2011-07-02     199596.0
Houston F...       1999  FIRE FIG...    ...  2010-07-12     210588.0

更多

在索引对齐的过程中,如果索引不能对齐,就会产生缺失值。只用max_dept_sal的前三行做新列:

>>> (
...     employee
...     .set_index("DEPARTMENT")
...     .assign(
...         MAX_SALARY2=max_dept_sal["BASE_SALARY"].head(3)
...     )
...     .MAX_SALARY2
...     .value_counts(dropna=False)
... )
NaN         1955
140416.0      29
100000.0      11
64251.0        5
Name: MAX_SALARY2, dtype: int64

我的方法是使用groupbytransform,后面章节会详细讨论:

>>> max_sal = (
...     employee
...     .groupby("DEPARTMENT")
...     .BASE_SALARY
...     .transform("max")
... )
>>> (employee.assign(MAX_DEPT_SALARY=max_sal))
UNIQUE_ID POSITION_TITLE  ...    JOB_DATE  MAX_DEPT_SALARY
0             0  ASSISTAN...    ...  2012-10-13     121862.0
1             1  LIBRARY ...    ...  2010-09-18     107763.0
2             2  POLICE O...    ...  2015-02-03     199596.0
3             3  ENGINEER...    ...  1991-05-25     210588.0
4             4  ELECTRICIAN    ...  1994-10-22      89194.0
...         ...          ...    ...         ...          ...
1995       1995  POLICE O...    ...  2015-06-09     199596.0
1996       1996  COMMUNIC...    ...  2013-10-06     210588.0
1997       1997  POLICE O...    ...  2015-10-13     199596.0
1998       1998  POLICE O...    ...  2011-07-02     199596.0
1999       1999  FIRE FIG...    ...  2010-07-12     210588.0

下面的方法是将groupbymerge联用:

>>> max_sal = (
...     employee
...     .groupby("DEPARTMENT")
...     .BASE_SALARY
...     .max()
... )
>>> (
...     employee.merge(
...         max_sal.rename("MAX_DEPT_SALARY"),
...         how="left",
...         left_on="DEPARTMENT",
...         right_index=True,
...     )
... )
UNIQUE_ID POSITION_TITLE  ...    JOB_DATE  MAX_DEPT_SALARY
0             0  ASSISTAN...    ...  2012-10-13     121862.0
1             1  LIBRARY ...    ...  2010-09-18     107763.0
2             2  POLICE O...    ...  2015-02-03     199596.0
3             3  ENGINEER...    ...  1991-05-25     210588.0
4             4  ELECTRICIAN    ...  1994-10-22      89194.0
...         ...          ...    ...         ...          ...
1995       1995  POLICE O...    ...  2015-06-09     199596.0
1996       1996  COMMUNIC...    ...  2013-10-06     210588.0
1997       1997  POLICE O...    ...  2015-10-13     199596.0
1998       1998  POLICE O...    ...  2011-07-02     199596.0
1999       1999  FIRE FIG...    ...  2010-07-12     210588.0

8.6 高亮每列的最大值

读取数据集:

>>> college = pd.read_csv(
...     "data/college.csv", index_col="INSTNM"
... )
>>> college.dtypes
CITY                   object
STABBR                 object
HBCU                  float64
MENONLY               float64
WOMENONLY             float64
                       ...
PCTPELL               float64
PCTFLOAN              float64
UG25ABV               float64
MD_EARN_WNE_P10        object
GRAD_DEBT_MDN_SUPP     object
Length: 26, dtype: object

随机检查数据:

>>> college.MD_EARN_WNE_P10.sample(10, random_state=42)
INSTNM
Career Point College                                      20700
Ner Israel Rabbinical College                       PrivacyS...
Reflections Academy of Beauty                               NaN
Capital Area Technical College                            26400
West Virginia University Institute of Technology          43400
Mid-State Technical College                               32000
Strayer University-Huntsville Campus                      49200
National Aviation Academy of Tampa Bay                    45000
University of California-Santa Cruz                       43000
Lexington Theological Seminary                              NaN
Name: MD_EARN_WNE_P10, dtype: object
>>> college.GRAD_DEBT_MDN_SUPP.sample(10, random_state=42)
INSTNM
Career Point College                                      14977
Ner Israel Rabbinical College                       PrivacyS...
Reflections Academy of Beauty                       PrivacyS...
Capital Area Technical College                      PrivacyS...
West Virginia University Institute of Technology          23969
Mid-State Technical College   

.value_counts查看为什么是字符串:

>>> college.MD_EARN_WNE_P10.value_counts()
PrivacySuppressed    822
38800                151
21500                 97
49200                 78
27400                 46
                    ...
66700                  1
163900                 1
64400                  1
58700                  1
64100                  1
Name: MD_EARN_WNE_P10, Length: 598, dtype: int64
>>> set(college.MD_EARN_WNE_P10.apply(type))
{<class 'float'>, <class 'str'>}
>>> college.GRAD_DEBT_MDN_SUPP.value_counts()
PrivacySuppressed    1510
9500                  514
27000                 306
25827.5               136
25000                 124
                     ...
16078.5                 1
27763.5                 1
6382                    1
27625                   1
11300                   1
Name: GRAD_DEBT_MDN_SUPP, Length: 2038, dtype: int64

使用to_numeric将其转化为数值类型,参数errors='coerce'可以将字符串转换为NaN

>>> cols = ["MD_EARN_WNE_P10", "GRAD_DEBT_MDN_SUPP"]
>>> for col in cols:
...     college[col] = pd.to_numeric(
...         college[col], errors="coerce"
...     )
>>> college.dtypes.loc[cols]
MD_EARN_WNE_P10       float64
GRAD_DEBT_MDN_SUPP    float64
dtype: object

选取数值类型数据:

>>> college_n = college.select_dtypes("number")
>>> college_n.head()
              HBCU  MENONLY  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP
INSTNM                       ...
Alabama A...   1.0      0.0  ...      30300.0          33888.0
Universit...   0.0      0.0  ...      39700.0          21941.5
Amridge U...   0.0      0.0  ...      40100.0          23370.0
Universit...   0.0      0.0  ...      45500.0          24097.0
Alabama S...   1.0      0.0  ...      26600.0          33118.5

有的二分列只有1和0两种数值,用.nunique进行判断:

>>> binary_only = college_n.nunique() == 2
>>> binary_only.head()
HBCU          True
MENONLY       True
WOMENONLY     True
RELAFFIL      True
SATVRMID     False
dtype: bool

用布尔数组创建二分列表:

>>> binary_cols = binary_only[binary_only].index
>>> binary_cols
Index(['HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL', 'DISTANCEONLY', 'CURROPER'], dtype='object')

使用drop方法删除这些二分列表:

>>> college_n2 = college_n.drop(columns=binary_cols)
>>> college_n2.head()
              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP
INSTNM                            ...
Alabama A...     424.0     420.0  ...      30300.0          33888.0
Universit...     570.0     565.0  ...      39700.0          21941.5
Amridge U...       NaN       NaN  ...      40100.0          23370.0
Universit...     595.0     590.0  ...      45500.0          24097.0
Alabama S...     425.0     430.0  ...      26600.0          33118.5

idxmax方法找到每列最大值对应的行索引标签:

>>> max_cols = college_n2.idxmax()
>>> max_cols
SATVRMID                      California Institute of Technology
SATMTMID                      California Institute of Technology
UGDS                               University of Phoenix-Arizona
UGDS_WHITE                Mr Leon's School of Hair Design-Moscow
UGDS_BLACK                    Velvatex College of Beauty Culture
                                         ...
PCTPELL                                 MTI Business College Inc
PCTFLOAN                                  ABC Beauty College Inc
UG25ABV                           Dongguk University-Los Angeles
MD_EARN_WNE_P10                     Medical College of Wisconsin
GRAD_DEBT_MDN_SUPP    Southwest University of Visual Arts-Tucson
Length: 18, dtype: object

max_cols上调用unique方法,能得到所有行索引的值:

>>> unique_max_cols = max_cols.unique()
>>> unique_max_cols[:5]
array(['California Institute of Technology',
       'University of Phoenix-Arizona',
       "Mr Leon's School of Hair Design-Moscow",
       'Velvatex College of Beauty Culture',
       'Thunderbird School of Global Management'], dtype=object)

使用.style高亮所有最大值:

college_n2.loc[unique_max_cols].style.highlight_max()

重写上面的代码,提高可读性:

>>> def remove_binary_cols(df):
...     binary_only = df.nunique() == 2
...     cols = binary_only[binary_only].index.tolist()
...     return df.drop(columns=cols)
>>> def select_rows_with_max_cols(df):
...     max_cols = df.idxmax()
...     unique = max_cols.unique()
...     return df.loc[unique]
>>> (
...     college
...     .assign(
...         MD_EARN_WNE_P10=pd.to_numeric(
...             college.MD_EARN_WNE_P10, errors="coerce"
...         ),
...         GRAD_DEBT_MDN_SUPP=pd.to_numeric(
...             college.GRAD_DEBT_MDN_SUPP, errors="coerce"
...         ),
...     )
...     .select_dtypes("number")
...     .pipe(remove_binary_cols)
...     .pipe(select_rows_with_max_cols)
... )
              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP
INSTNM                            ...
Californi...     765.0     785.0  ...      77800.0          11812.5
Universit...       NaN       NaN  ...          NaN          33000.0
Mr Leon's...       NaN       NaN  ...          NaN          15710.0
Velvatex ...       NaN       NaN  ...          NaN              NaN
Thunderbi...       NaN       NaN  ...     118900.0              NaN
...                ...       ...  ...          ...              ...
MTI Busin...       NaN       NaN  ...      23000.0           9500.0
ABC Beaut...       NaN       NaN  ...          NaN          16500.0
Dongguk U...       NaN       NaN  ...          NaN              NaN
Medical C...       NaN       NaN  ...     233100.0              NaN
Southwest...       NaN       NaN  ...      27200.0          49750.0

更多

可以用axis参数,高亮每行的最大值:

>>> college = pd.read_csv(
...     "data/college.csv", index_col="INSTNM"
... )
>>> college_ugds = college.filter(like="UGDS_").head()

8.7 用链式方法替换idxmax

和上一节一样,读取数据集,只选取目标数值列:

>>> def remove_binary_cols(df):
...     binary_only = df.nunique() == 2
...     cols = binary_only[binary_only].index.tolist()
...     return df.drop(columns=cols)
>>> college_n = (
...     college
...     .assign(
...         MD_EARN_WNE_P10=pd.to_numeric(
...             college.MD_EARN_WNE_P10, errors="coerce"
...         ),
...         GRAD_DEBT_MDN_SUPP=pd.to_numeric(
...             college.GRAD_DEBT_MDN_SUPP, errors="coerce"
...         ),
...     )
...     .select_dtypes("number")
...     .pipe(remove_binary_cols)
... )

使用max方法,找到每列的最大值:

>>> college_n.max().head()
SATVRMID         765.0
SATMTMID         785.0
UGDS          151558.0
UGDS_WHITE         1.0
UGDS_BLACK         1.0
dtype: float64

使用eq方法,将DataFrame中的每个值和列的最大值比较:

>>> college_n.eq(college_n.max()).head()
              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP
INSTNM                            ...
Alabama A...     False     False  ...        False            False
Universit...     False     False  ...        False            False
Amridge U...     False     False  ...        False            False
Universit...     False     False  ...        False            False
Alabama S...     False     False  ...        False            False

使用.any找到包含True值的行:

>>> has_row_max = (
...     college_n
...     .eq(college_n.max())
...     .any(axis="columns")
... )
>>> has_row_max.head()
INSTNM
Alabama A & M University               False
University of Alabama at Birmingham    False
Amridge University                     False
University of Alabama in Huntsville    False
Alabama State University               False
dtype: bool

检查有多少个最大值:

>>> college_n.shape
(7535, 18)
>>> has_row_max.sum()
401

这说明,有的列存在多个最大值。回到上面的步骤,用cumsum方法检查:

>>> college_n.eq(college_n.max()).cumsum()
              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP
INSTNM                            ...
Alabama A...         0         0  ...            0                0
Universit...         0         0  ...            0                0
Amridge U...         0         0  ...            0                0
Universit...         0         0  ...            0                0
Alabama S...         0         0  ...            0                0
...                ...       ...  ...          ...              ...
SAE Insti...         1         1  ...            1                2
Rasmussen...         1         1  ...            1                2
National ...         1         1  ...            1                2
Bay Area ...         1         1  ...            1                2
Excel Lea...         1         1  ...            1                2

cumsum方法再重复一下,找到1出现的地方:

>>> (college_n.eq(college_n.max()).cumsum().cumsum())
              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP
INSTNM                            ...
Alabama A...         0         0  ...            0                0
Universit...         0         0  ...            0                0
Amridge U...         0         0  ...            0                0
Universit...         0         0  ...            0                0
Alabama S...         0         0  ...            0                0
...                ...       ...  ...          ...              ...
SAE Insti...      7305      7305  ...         3445            10266
Rasmussen...      7306      7306  ...         3446            10268
National ...      7307      7307  ...         3447            10270
Bay Area ...      7308      7308  ...         3448            10272
Excel Lea...      7309      7309  ...         3449            10274

现在再用any方法找到至少有一个True值的列:

>>> has_row_max2 = (
...     college_n.eq(college_n.max())
...     .cumsum()
...     .cumsum()
...     .eq(1)
...     .any(axis="columns")
... )
>>> has_row_max2.head()
INSTNM
Alabama A & M University               False
University of Alabama at Birmingham    False
Amridge University                     False
University of Alabama in Huntsville    False
Alabama State University               False
dtype: bool

现在,has_row_max2的True值就不必列数多了:

>>> has_row_max2.sum()
16

计算最大值对应的行索引标签:

>>> idxmax_cols = has_row_max2[has_row_max2].index
>>> idxmax_cols
Index(['Thunderbird School of Global Management',
       'Southwest University of Visual Arts-Tucson', 'ABC Beauty College Inc',
       'Velvatex College of Beauty Culture',
       'California Institute of Technology',
       'Le Cordon Bleu College of Culinary Arts-San Francisco',
       'MTI Business College Inc', 'Dongguk University-Los Angeles',
       'Mr Leon's School of Hair Design-Moscow',
       'Haskell Indian Nations University', 'LIU Brentwood',
       'Medical College of Wisconsin', 'Palau Community College',
       'California University of Management and Sciences',
       'Cosmopolitan Beauty and Tech School', 'University of Phoenix-Arizona'],
      dtype='object', name='INSTNM')
>>> set(college_n.idxmax().unique()) == set(idxmax_cols)
True

将其写成idx_max函数:

>>> def idx_max(df):
...     has_row_max = (
...         df
...         .eq(df.max())
...         .cumsum()
...         .cumsum()
...         .eq(1)
...         .any(axis="columns")
...     )
...     return has_row_max[has_row_max].index
>>> idx_max(college_n)
Index(['Thunderbird School of Global Management',
       'Southwest University of Visual Arts-Tucson', 'ABC Beauty College Inc',
       'Velvatex College of Beauty Culture',
       'California Institute of Technology',
       'Le Cordon Bleu College of Culinary Arts-San Francisco',
       'MTI Business College Inc', 'Dongguk University-Los Angeles',
       'Mr Leon's School of Hair Design-Moscow',
       'Haskell Indian Nations University', 'LIU Brentwood',
       'Medical College of Wisconsin', 'Palau Community College',
       'California University of Management and Sciences',
       'Cosmopolitan Beauty and Tech School', 'University of Phoenix-Arizona'],
      dtype='object', name='INSTNM')

更多

比较两种方法的速度:

>>> def idx_max(df):
...     has_row_max = (
...         df
...         .eq(df.max())
...         .cumsum()
...         .cumsum()
...         .eq(1)
...         .any(axis="columns")
...         [lambda df_: df_]
...         .index
...     )
...     return has_row_max
>>> %timeit college_n.idxmax().values
1.12 ms ± 28.4 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> %timeit idx_max(college_n)
5.35 ms ± 55.2 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

8.8 发现列的最常见最大值

读取数据集:

>>> college = pd.read_csv(
...     "data/college.csv", index_col="INSTNM"
... )
>>> college_ugds = college.filter(like="UGDS_")
>>> college_ugds.head()
              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN
INSTNM                                ...
Alabama A...      0.0333      0.9353  ...    0.0059     0.0138
Universit...      0.5922      0.2600  ...    0.0179     0.0100
Amridge U...      0.2990      0.4192  ...    0.0000     0.2715
Universit...      0.6988      0.1255  ...    0.0332     0.0350
Alabama S...      0.0158      0.9208  ...    0.0243     0.0137

.idxmax在列上,找到最高比例种族对应的学校:

>>> highest_percentage_race = college_ugds.idxmax(
...     axis="columns"
... )
>>> highest_percentage_race.head()
INSTNM
Alabama A & M University
University of Alabama at Birmingham
Amridge University
University of Alabama in Huntsville
Alabama State University
dtype: object

查看最大值的分布情况:

>>> highest_percentage_race.value_counts(normalize=True)
UGDS_WHITE    0.670352
UGDS_BLACK    0.151586
UGDS_HISP     0.129473
UGDS_UNKN     0.023422
UGDS_ASIAN    0.012074
UGDS_AIAN     0.006110
UGDS_NRA      0.004073
UGDS_NHPI     0.001746
UGDS_2MOR     0.001164
dtype: float64

更多

对于黑人占多数的学校,其它族裔是如何分布的:

>>> (
...     college_ugds
...     [highest_percentage_race == "UGDS_BLACK"]
...     .drop(columns="UGDS_BLACK")
...     .idxmax(axis="columns")
...     .value_counts(normalize=True)
... )
UGDS_WHITE    0.661228
UGDS_HISP     0.230326
UGDS_UNKN     0.071977
UGDS_NRA      0.018234
UGDS_ASIAN    0.009597
UGDS_2MOR     0.006718
UGDS_AIAN     0.000960
UGDS_NHPI     0.000960
dtype: float64

第01章 Pandas基础
第02章 DataFrame基础运算
第03章 创建和持久化DataFrame
第04章 开始数据分析
第05章 探索性数据分析
第06章 选取数据子集
第07章 过滤行
第08章 索引对齐

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容