pandas -2.定位切片区域,元素,iloc,loc,ix

1.符号[],()
刚接触pandas一直不太明白pandas里面什么时候用[],什么时候用(),后来觉得要选取dataframe一部分的时候就用[],()一般是用在函数里面的。

2.切片区域
2.1列
单列最简单的,只有一列就直接dataframe['列名']

多列稍有麻烦:dataframe[['列1','列2'...]],外层[]表示我要对dataframe做选择了,里层表示选择的内容比较多,用list告诉你他们是一起的。
但是后来我要选取非常多列的时候,要这样一一罗列就不大方便了。
我的做法是先把所有的列名转成list然后在list里选择。
比如
col = dataframe.columns.values.tolist(),
dataframe[ col[3:-5]].

2.2行
这也是比较简单的,因为pandas的切片是默认行切片的。
dataframe[3:]就是index为3的行到最后一行
值得注意的是这里区间是左闭右开的,所以index为3到5行是dataframe[3:6]

2.3区域和元素
定位区域和元素方法是一样都可以用iloc,loc,ix来定位,稍有不同是loc是用index跟列名,iloc是用位置即第0行到第5行,第2列到第5列...,ix是混合使用既可以用index也可以用位置,但是我发现index为是数字的时候,ix会自动理解为index值。
用的地方,一般来说知道index一般会用index来定位。
iloc一般用在筛选之后,你并不知道具体index就用iloc
ix我觉得比较适合index不是数字的情况。

方法是dataframe.iloc/loc/ix[行的选择,列的选择]
选择的是元素,则行就是一个元素,列也是一个元素,比如dataframe.loc[5,'A'],选择index为5,列名为A的元素。
若要选择的是区域,行就是3:5,列就是['a','b'],
比如dataframe.iloc[:3,[2,3]]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,063评论 6 510
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,805评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,403评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,110评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,130评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,877评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,533评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,429评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,947评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,078评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,204评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,894评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,546评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,086评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,195评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,519评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,198评论 2 357

推荐阅读更多精彩内容