DeepWalk学习笔记

DeepWalk的输入是一张图或者网络,输出为网络中顶点的向量表示。DeepWalk通过截断随机游走(truncated random walk)学习出一个网络的社会表示(social representation)


image.png

前提假设

随机游走的分布规律与NLP中句子序列在语料库中出现的规律有着类似的幂律分布特征。那么既然网络的特性与自然语言处理中的特性十分类似,那么就可以将NLP中词向量的模型用在网络表示中。


image.png

优化目标

image.png

image.png

image.png
  • 映射函数选取
image.png

忽视顶点顺序,更好地表达顶点临近关系,只需要计算一个顶点的向量。

skip-gram

image.png

Hierarchical Softmax解决迭代计算量庞大的问题。
Huffman编码是一种熵编码方式,对于出现频率高的符号用较短的编码表示,出现频率较低的符号用较长的编码表示,从而达到编码压缩的目的。Hierarchical Softmax树也可以采用Huffman编码的方式生成,高频词用较短的路径到达,低频词用较长的路径到达,可以进一步降低整个训练过程的计算量。


image.png

伪代码

image.png

截断随机游走

image.png

随机游走长度固定。根结点vi,随机路径Wvi。

注意的点

  • 适应性,网络表示必须能适应网络的变化。
    网络是一个动态的图,不断地会有新的节点和边添加进来,网络表示需要适应网络的正常演化。
  • 属于同一个社区的节点有着类似的表示。网络中往往会出现一些特征相似的点构成的团状结构,这些节点表示成向量后必须相似。
  • 低维。
    代表每个顶点的向量维数不能过高,过高会有过拟合的风险,对网络中有缺失数据的情况处理能力较差。
  • 连续性。
    低维的向量应该是连续的。

参考

w2v: https://www.jianshu.com/p/3217e8c00549
文献:https://arxiv.org/pdf/1403.6652.pdf
https://zhuanlan.zhihu.com/p/45167021
slide:http://www.perozzi.net/publications/14_kdd_deepwalk-slides.pdf

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,063评论 6 510
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,805评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,403评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,110评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,130评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,877评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,533评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,429评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,947评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,078评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,204评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,894评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,546评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,086评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,195评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,519评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,198评论 2 357

推荐阅读更多精彩内容