盘点6个Pandas中批量替换字符的方法

大家好,我是Python进阶者。

一、前言

前几天在Python最强王者群有个叫【dcpeng】的粉丝问了一个关于Pandas中的问题,这里拿出来给大家分享下,一起学习。

想问一下我有一列编码为1,2,3,4的数据,如何将1批量换为“开心”,2批量换为“悲伤”这种字符替换呢?

二、解决过程

思路挺简单,限定Pandas处理,想到的方法有很多,这里拿出来给大家分享,希望对大家的学习有帮助。

image.png

下面这个是生成源数据的代码:

df = pd.DataFrame({'col1': [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]})

方法一:【月神】解答

代码如下所示:

df['col2'] = df['col1'].map({1:"开心", 2:"悲伤", 3:"难过", 4:"泪目"})

运行结果如下图所示:

image.png
方法二:【dcpeng】解答

这个方法是参考才哥的文章写出来的,代码如下所示:

def getValue(s):
    if s==1:
        return '开心'
    elif s==2:
        return '悲伤'
    elif s==3:
        return '难过'
    elif s==4:
        return '泪目'
df['col3'] = df['col1'].apply(getValue)
df

运行结果如下图所示:

image.png
方法三:【冫马讠成】解答

【冫马讠成】大佬给了一个思路,使用replace实现。

image.png

代码如下所示:

df['col4'] = df['col1'].replace(1, '开心').replace(2, '悲伤').replace(3, '难过').replace(4, '泪目')

得到的结果如下所示:

image.png
方法四:【dcpeng】解答

这个方法是基于apply()函数,代码如下所示:

def get_value(s):
    dict = {1:"开心", 2:"悲伤", 3:"难过", 4:"泪目"}
    return dict[s]
df['col5'] = df['col1'].apply(get_value)
df

运行结果如下图所示:

image.png
方法五:【沈复】解答

【沈复】大佬给了一个思路和代码,如下图所示:

image.png

这个方法是基于map()函数,代码如下所示:

def get_value(s):
    dict = {1:"开心", 2:"悲伤", 3:"难过", 4:"泪目"}
    return dict[s]
df['col5'] = df['col1'].map(get_value)
df

运行结果如下图所示:

image.png
方法六:【月神】解答

这里【月神】仍然是使用replace方法进行实现的,但是代码秀了很多。

image.png

代码如下所示:

df['col7'] = df['col1'].replace([1, 2, 3, 4], ['开心', '悲伤', '难过', '泪目'])

【月神】提醒:这个是全匹配,不要加regex=True参数,不然你会后悔的!

运行结果如下图所示:

image.png

三、总结

大家好,我是Python进阶者。这篇文章基于粉丝提问,针对有一列编码为1,2,3,4的数据,如何将1批量换为“开心”,2批量换为“悲伤”这种字符替换的问题,盘点了6个Pandas中批量替换字符的方法,给出了具体说明和演示,顺利地帮助粉丝解决了问题!

最后感谢粉丝【dcpeng】提问,感谢【🌑(这是月亮的背面)】和【dcpeng】、【才哥】、【沈复】、大佬给出的示例和代码支持。感谢粉丝【冫马讠成】、【老松鼠】等人参与学习交流。

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容