tensorflow笔记:4.5神经网络搭建八股

  • 前向传播就是搭建网络,设计网络结构(forward.py)

    1. 完成网络结构的设计,给出从输入到输出的数据通路。两个参数,x是输入,regularizer表示正则化权重
def forward(x, regularizer):
        w = 
        b = 
        y = 
        return y 
  1. 与参数w有关,两个参数分别是w的shape,以及正则化权重
def get_weight(shape, regularizer): 
        w = tf.Variable() #给w赋初值
        tf.add_to_collection("losses", tf.contrib.layers.l2_regularizer(regularizer)(w))
        return w
  1. 与参数b有关,参数表示b的形状(个数)
def get_bias(shape):
        b = tf.Variabel() #赋初值
        return b
  • 反向传播就是训练网络,优化网络参数(backward.py)

def backward():
    x = tf.placeholder () #占位
    y_ = tf.placeholder()
    y = forward.forward(x,REGULARIZER) #复现前向传播结构,求y
    global_step = tf.Variable(0,trainable = False)
    loss = 
    #损失函数,正则化
    #loss可以是:(均方误差)
    y与y_的差距(loss_mse) = tf.reduce_mean(tf.square(y-y_))
    #也可以是:(交叉熵)
    ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits =              y,labels = tf.argmax(y_,1))
    y与y_的差距(cem) = tf.reduce_mean(ce)

    #加入正则化后:
    loss = y与y_的差距+tf.add_n(tf.get_collection("losses"))
    #指数衰减学习率
    learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,数据集总样本数/BATCH_SIZE,LEARNING_RATE_DECAY,staircase = True)
    train_step =tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step = global_step)
    #滑动平均
    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
    ema_op = ema.apply(tf.trainable_variables())
    with tf.control_dependencies([train_step,ema_op]):
    trian_op = tf.no_op(name = "train")
    with tf.Session() as sess:
        init.run(init_op)
        for i in range(STEPS):
            sess.run(train_step,feed_dict = {x:, y:})
            if i % 轮数 == 0 :
                print()
if __name__ = "__main__": #判断Python运行的文件是否是主文件,如果是主文件,就执行backward这个函数

对上节课正则化代码模块化:
opt4_8_generateds.py

#coding:utf-8
#版本信息:ubuntu18.04  python3.6.8  tensorflow 1.14.0
#作者:九除以三还是三哦  如有错误,欢迎评论指正!!
#生成模拟数据集
import numpy as np
import matplotlib.pyplot as plt
seed = 2 
def generateds():
    #基于seed产生随机数
    rdm = np.random.RandomState(seed)
    #随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
    X = rdm.randn(300,2)
    #从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余赋值0
    #作为输入数据集的标签(正确答案)
    Y_ = [int(x0*x0 + x1*x1 <2) for (x0,x1) in X]
    #遍历Y中的每个元素,1赋值'red'其余赋值'blue',这样可视化显示时人可以直观区分
    Y_c = [['red' if y else 'blue'] for y in Y_]#对应颜色Y_c
    #对数据集X和标签Y进行形状整理,第一个元素为-1表示跟随第二列计算,第二个元素表示多少列,可见X为两列,Y为1列
    X = np.vstack(X).reshape(-1,2)#整理形状
    Y_ = np.vstack(Y_).reshape(-1,1)#整理形状
    
    return X, Y_, Y_c
    
#print (X)
#print (Y_)
#print (Y_c)
#用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写) 
#plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) 
#plt.show()

opt4_8_backward.py

#coding:utf-8
#版本信息:ubuntu18.04  python3.6.8  tensorflow 1.14.0
#0导入模块 ,生成模拟数据集
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import opt4_8_generateds
import opt4_8_forward

STEPS = 40000
BATCH_SIZE = 30 
LEARNING_RATE_BASE = 0.001
LEARNING_RATE_DECAY = 0.999
REGULARIZER = 0.01#正则化

def backward():#反向传播
    x = tf.compat.v1.placeholder(tf.float32, shape=(None, 2))#占位
    y_ =tf.compat.v1.placeholder(tf.float32, shape=(None, 1))#占位
    #X:300行2列的矩阵。Y_:坐标的平方和小于2,给Y赋值1,其余赋值0
    X, Y_, Y_c = opt4_8_generateds.generateds()
    
    y = opt4_8_forward.forward(x, REGULARIZER)#前向传播计算后求得输出y
    
    global_step = tf.Variable(0,trainable=False)#轮数计数器  
    #指数衰减学习率
    learning_rate = tf.compat.v1.train.exponential_decay(
        LEARNING_RATE_BASE,#学习率
        global_step,#计数
        300/BATCH_SIZE,
        LEARNING_RATE_DECAY,#学习衰减lü
        staircase=True)#选择不同的衰减方式


    #定义损失函数
    loss_mse = tf.reduce_mean(tf.square(y-y_))#均方误差
    loss_total = loss_mse + tf.add_n(tf.compat.v1.get_collection('losses'))#正则化
    
    #定义反向传播方法:包含正则化
    train_step = tf.compat.v1.train.AdamOptimizer(learning_rate).minimize(loss_total)

    with tf.compat.v1.Session() as sess:
        init_op = tf.global_variables_initializer()#初始化
        sess.run(init_op)#初始化
        for i in range(STEPS):
            start = (i*BATCH_SIZE) % 300
            end = start + BATCH_SIZE#3000轮
            sess.run(train_step, feed_dict={x: X[start:end], y_:Y_[start:end]})
            if i % 2000 == 0:
                loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_})
                print("After %d steps, loss is: %f" %(i, loss_v))

        xx, yy = np.mgrid[-3:3:.01, -3:3:.01]#网格坐标点
        grid = np.c_[xx.ravel(), yy.ravel()]
        probs = sess.run(y, feed_dict={x:grid})
        probs = probs.reshape(xx.shape)
    
    plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c)) #画点
    plt.contour(xx, yy, probs, levels=[.5])#画线
    plt.show()#显示图像
    
if __name__=='__main__':
    backward()

opt4_8_forward.py

#coding:utf-8
#版本信息:ubuntu18.04  python3.6.8  tensorflow 1.14.0
import tensorflow as tf

#定义神经网络的输入、参数和输出,定义前向传播过程 
def get_weight(shape, regularizer):#(shape:W的形状,regularizer正则化)
    w = tf.Variable(tf.random.normal(shape), dtype=tf.float32)#赋初值,正态分布权重
    tf.compat.v1.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))#把正则化损失加到总损失losses中
    return w#返回w
#tf.compat.v1.add_to_collection(‘list_name’, element):将元素element添加到列表list_name中

def get_bias(shape):  #偏执b
    b = tf.Variable(tf.constant(0.01, shape=shape)) #偏执b=0.01
    return b#返回值
    
def forward(x, regularizer):#前向传播
    
    w1 = get_weight([2,11], regularizer)#设置权重   
    b1 = get_bias([11])#设置偏执
    y1 = tf.nn.relu(tf.matmul(x, w1) + b1)#计算图

    w2 = get_weight([11,1], regularizer)#设置权重
    b2 = get_bias([1])#设置偏执
    y = tf.matmul(y1, w2) + b2 #计算图
    
    return y#返回值
  • 运行代码
python3  opt4_8_generateds.py 
python3  opt4_8_backward.py 
模块化.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容