Windows 10 Tensorflow 安装

装了两天,系统重装一四次,软件安装卸载无数次,终于装好。

版本

软件版本

安装顺序

1.安装Python环境,并且勾上 Add Python to environment variables这个选项。
image.png
2.安装cuda和cudnn

将cudnn中的数据包复制到cuda对应的路径。如果报错缺少cu
ddn65-7.ddl就是没有将cudnn中的数据包复制的原因。


image.png
3.安装tensorflow:在cmd中输入指令pip install tensorflow-gpu
4.安装Pycharm,常规安装就行,没有什么特别注意的地方。
5.安装VS2015,如果不安装会报错找不到mvs4p.dll
6.在Pycharm新建Python项目,将下面的代码复制进项目运行,查看结果是否有异常及报错。

代码1:

import tensorflow as tf
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))

运行结果:
代码运行结果

代码2

import ctypes
import imp
import sys


def main():
    try:
        import tensorflow as tf
        print("TensorFlow successfully installed.")
        if tf.test.is_built_with_cuda():
            print("The installed version of TensorFlow includes GPU support.")
        else:
            print("The installed version of TensorFlow does not include GPU support.")
        sys.exit(0)
    except ImportError:
        print("ERROR: Failed to import the TensorFlow module.")

    candidate_explanation = False

    python_version = sys.version_info.major, sys.version_info.minor
    print("\n- Python version is %d.%d." % python_version)
    if not (python_version == (3, 5) or python_version == (3, 6)):
        candidate_explanation = True
        print("- The official distribution of TensorFlow for Windows requires "
              "Python version 3.5 or 3.6.")

    try:
        _, pathname, _ = imp.find_module("tensorflow")
        print("\n- TensorFlow is installed at: %s" % pathname)
    except ImportError:
        candidate_explanation = False
        print("""
- No module named TensorFlow is installed in this Python environment. You may
  install it using the command `pip install tensorflow`.""")

    try:
        msvcp140 = ctypes.WinDLL("msvcp140.dll")
    except OSError:
        candidate_explanation = True
        print("""
- Could not load 'msvcp140.dll'. TensorFlow requires that this DLL be
  installed in a directory that is named in your %PATH% environment
  variable. You may install this DLL by downloading Microsoft Visual
  C++ 2015 Redistributable Update 3 from this URL:
  https://www.microsoft.com/en-us/download/details.aspx?id=53587""")

    try:
        cudart64_80 = ctypes.WinDLL("cudart64_80.dll")
    except OSError:
        candidate_explanation = True
        print("""
- Could not load 'cudart64_80.dll'. The GPU version of TensorFlow
  requires that this DLL be installed in a directory that is named in
  your %PATH% environment variable. Download and install CUDA 8.0 from
  this URL: https://developer.nvidia.com/cuda-toolkit""")

    try:
        nvcuda = ctypes.WinDLL("nvcuda.dll")
    except OSError:
        candidate_explanation = True
        print("""
- Could not load 'nvcuda.dll'. The GPU version of TensorFlow requires that
  this DLL be installed in a directory that is named in your %PATH%
  environment variable. Typically it is installed in 'C:\Windows\System32'.
  If it is not present, ensure that you have a CUDA-capable GPU with the
  correct driver installed.""")

    cudnn5_found = False
    try:
        cudnn5 = ctypes.WinDLL("cudnn64_5.dll")
        cudnn5_found = True
    except OSError:
        candidate_explanation = True
        print("""
- Could not load 'cudnn64_5.dll'. The GPU version of TensorFlow
  requires that this DLL be installed in a directory that is named in
  your %PATH% environment variable. Note that installing cuDNN is a
  separate step from installing CUDA, and it is often found in a
  different directory from the CUDA DLLs. You may install the
  necessary DLL by downloading cuDNN 5.1 from this URL:
  https://developer.nvidia.com/cudnn""")

    cudnn6_found = False
    try:
        cudnn = ctypes.WinDLL("cudnn64_6.dll")
        cudnn6_found = True
    except OSError:
        candidate_explanation = True

    if not cudnn5_found or not cudnn6_found:
        print()
        if not cudnn5_found and not cudnn6_found:
            print("- Could not find cuDNN.")
        elif not cudnn5_found:
            print("- Could not find cuDNN 5.1.")
        else:
            print("- Could not find cuDNN 6.")
            print("""
  The GPU version of TensorFlow requires that the correct cuDNN DLL be installed
  in a directory that is named in your %PATH% environment variable. Note that
  installing cuDNN is a separate step from installing CUDA, and it is often
  found in a different directory from the CUDA DLLs. The correct version of
  cuDNN depends on your version of TensorFlow:

  * TensorFlow 1.2.1 or earlier requires cuDNN 5.1. ('cudnn64_5.dll')
  * TensorFlow 1.3 or later requires cuDNN 6. ('cudnn64_6.dll')

  You may install the necessary DLL by downloading cuDNN from this URL:
  https://developer.nvidia.com/cudnn""")

    if not candidate_explanation:
        print("""
- All required DLLs appear to be present. Please open an issue on the
  TensorFlow GitHub page: https://github.com/tensorflow/tensorflow/issues""")

    sys.exit(-1)


if __name__ == "__main__":
    main()

运行结果:


代码二运行结果

其中代码二是官方的检查错误的代码,如果有错,会对应打印出错误信息。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容