ROC曲线和PR(Precision-Recall)曲线的联系

在机器学习中,ROC(Receiver Operator Characteristic)曲线被广泛应用于二分类问题中来评估分类器的可信度,但是当处理一些高度不均衡的数据集时,PR曲线能表现出更多的信息,发现更多的问题。

1.ROC曲线和PR曲线是如何画出来的?

在二分类问题中,分类器将一个实例的分类标记为是或否,这可以用一个混淆矩阵来表示。混淆矩阵有四个分类,如下表:

actual positiveactual negative

predicted positiveTPFP

predicted negativeFNTN

其中,列对应于实例实际所属的类别,行表示分类预测的类别。

TP(True Positive):指正确分类的正样本数,即预测为正样本,实际也是正样本。

FP(False Positive):指被错误的标记为正样本的负样本数,即实际为负样本而被预测为正样本,所以是False。

TN(True Negative):指正确分类的负样本数,即预测为负样本,实际也是负样本。

FN(False Negative):指被错误的标记为负样本的正样本数,即实际为正样本而被预测为负样本,所以是False。

TP+FP+TN+FN:样本总数。

TP+FN:实际正样本数。

TP+FP:预测结果为正样本的总数,包括预测正确的和错误的。

FP+TN:实际负样本数。

TN+FN:预测结果为负样本的总数,包括预测正确的和错误的。

这里面的概念有些绕,需要慢慢理解,/(ㄒoㄒ)/~~。以这四个基本指标可以衍生出多个分类器评价指标,如下图:

在ROC曲线中,以FPR为x轴,TPR为y轴。FPR指实际负样本中被错误预测为正样本的概率。TPR指实际正样本中被预测正确的概率。如下图:

  在PR曲线中,以Recall(貌似翻译为召回率或者查全率)为x轴,Precision为y轴。Recall与TPR的意思相同,而Precision指正确分类的正样本数占总正样本的比例。如下图:

  绘制ROC曲线和PR曲线都是选定不同阈值,从而得到不同的x轴和y轴的值,画出曲线。例如,一个分类算法,找出最优的分类效果,对应到ROC空间中的一个点。通常分类器输出的都是score,如SVM、神经网络等,有如下预测效果:

no.TrueHyp(0.5)Hyp(0.6)Score

1pYY0.99999

2pYY0.99999

3pYY0.99993

4pYY0.99986

5pYY0.99964

6pYY0.99955

7nYY0.68139

8nYN0.50961

9nNN0.48880

10nNN0.44951

True表示实际样本属性,Hyp表示预测结果样本属性,第4列即是Score,Hyp的结果通常是设定一个阈值,比如上表Hyp(0.5)和Hyp(0.6)就是阈值为0.5和0.6时的结果,Score>阈值为正样本,小于阈值为负样本,这样只能算出一个ROC值,

当阈值为0.5时,TPR=6/(6+0)=1,FPR=FP/(FP+TN)=2/(2+2)=0.5,得到ROC的一个坐标为(0.5,1);Recall=TPR=1,Precision=6/(6+2)=0.75,得到一个PR曲线坐标(1,0.75)。同理得到不同阈下的坐标,即可绘制出曲线

阈值TPRFPRRecallPrecisionROC坐标PR坐标

0.510.510.75(0.5,1)(1,0.75)

0.610.2510.86(0.25,1)(1,0.86)

2.ROC曲线和PR曲线的关系

在ROC空间,ROC曲线越凸向左上方向效果越好。与ROC曲线左上凸不同的是,PR曲线是右上凸效果越好。

ROC和PR曲线都被用于评估机器学习算法对一个给定数据集的分类性能,每个数据集都包含固定数目的正样本和负样本。而ROC曲线和PR曲线之间有着很深的关系。

  定理1:对于一个给定的包含正负样本的数据集,ROC空间和PR空间存在一一对应的关系,也就是说,如果recall不等于0,二者包含完全一致的混淆矩阵。我们可以将ROC曲线转化为PR曲线,反之亦然。

定理2:对于一个给定数目的正负样本数据集,一条曲线在ROC空间中比另一条曲线有优势,当且仅当第一条曲线在PR空间中也比第二条曲线有优势。(这里的“一条曲线比其他曲线有优势”是指其他曲线的所有部分与这条曲线重合或在这条曲线之下。)

证明过程见文章《The Relationship Between Precision-Recall and ROC Curves

当正负样本差距不大的情况下,ROC和PR的趋势是差不多的,但是当负样本很多的时候,两者就截然不同了,ROC效果依然看似很好,但是PR上反映效果一般。解释起来也简单,假设就1个正例,100个负例,那么基本上TPR可能一直维持在100左右,然后突然降到0.如图,(a)(b)分别为正负样本1:1时的ROC曲线和PR曲线,二者比较接近。而(c)(d)的正负样本比例为1:1,这时ROC曲线效果依然很好,但是PR曲线则表现的比较差。这就说明PR曲线在正负样本比例悬殊较大时更能反映分类的性能。


3.AUC

AUC(Area Under Curve)即指曲线下面积占总方格的比例。有时不同分类算法的ROC曲线存在交叉,因此很多时候用AUC值作为算法好坏的评判标准。面积越大,表示分类性能越好。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容