HCR大数据战略之三:全景洞察的消费者画像模型

当前,基于大数据与标签化思路的消费者画像分析,成为B2C企业深入认知目标消费者特性的重要工具,并在电商、DSP广告等互联网企业发挥作用。越来越多的传统B2C行业,也开始重视其价值。同时,更多的数据资源方(如运营商等)也希望凭借其大数据资源上的消费者画像服务,获得更多的衍生收入。

消费者画像,本质作为消费者研究的一种量化形式,核心问题仍然是消费者的洞察。而HCR作为市场研究公司,在消费者研究方面有着长期的模型积累和经验丰富的研究人员。如今,HCR借助自身研究优势,同时吸取其他系统优点,建立推出真正具有全景、深入洞察能力的消费者画像模型。

HCR消费者画像模型体系由两大部分组成:标签体系与相应的分析模型。首先我们来介绍一下标签体系。

消费者标签体系 ( 如何定义用户 )

已经完成的标签体系中,设计用户标签近200个(根据业务/.研究深入在不断扩展中),共分为5大类,如下图(限于篇幅图中仅列举部分标签)

数据来源 : 大数据平台部@HCR

HCR用户标签体系所具有的全景刻画能力,主要表现在:

l 提供对消费者更全面的刻画维度。当前众多标签体系(以电商和在线广告为代表)基本是面向精准营销和个性化推荐为目的,虽然也号称全景,但实际标签集中于购买兴趣/爱好和消费倾向这些与后续营收相关的用户特性。而这只是HCR用户标签的一个子集(第四大类)。仔细研究HCR的标签体系你会发现,除了兴趣爱好外,HCR的基本属性、社会/生活属性与行为习惯的相关标签类,真正从消费者实际日常生活的更多基本角度(如健康/车辆使用/住房/移动通信/居住/日常交通等等)全面立体地描述消费者的特性。

l 标签的刻画粒度也更加细化。比如年龄段,常规的多采用70后/80后/90后这样的划分原则,而HCR除此之外还能提供更多描述粒度,如中学生/高中生(甚至高三学生)/大学生… 这对发现和细分目标用户更有价值。

而HCR用户标签的深入洞察能力,则主要表现在:

l 更加丰富的标签体系带来更多洞察可能,但这还不够,HCR首创引入了心理学属性标签(第五大类 共30多个),融合了消费者研究的思想,以生活方式/个性/价值观等深层标识,来揭示消费者的内在特性,使得我们能够深入探查消费者的本性,也使得画像结果有更泛化的应用价值。

l 更深入的算法模型。基于标签体系上的分析算法模型,在标注精度和广度上都有了更大进步(见后面详细介绍)

l 标签的标注结果,加入程度指标来细化,这样更准确地区分消费者对某种特性的贴近程度(如爱好游戏可分为轻度、中度和重度三种程度)。这对于更准确地理解消费者大有帮助。

2标签分析方法(如何打标签)

与标签体系一样,HCR的标签分析模型也具有独特而有效的的分析方法。

l 主要通过行为类数据为分析依据

在标签分析中,主要借助行为类大数据(而非直接的属性数据)来推演得到相应结果(如不是基于客户身份证信息推导其性别标签)。 这样的方法,难度大,需要对行为理解更深入,但可以避免涉及大量用户敏感信息,同时也更具有更好的适用性。

HCR认为,用户的行为数据(当前主要为线上行为)主要由下几种行为场景模式组成(这里浏览包含网页与视频)。当市面上大多数标签研究聚焦于搜索/浏览和购物行为数据时,我们选择了手机App使用行为这个独特的突破口。

数据来源 : 大数据平台部@HCR

l 分析方法的三驾马车

HCR消费者画像分析团队由HCR资深消费者研究员与大数据平台部挖掘算法人员组成。双方配合探索研发兼具研究与技术分析优点的可计算模型。

n 行为规则库抽象用户行为模式: 因为消费者的日常行为会反映其个人特性(标签),因此通过行为模式的推理就能为消费者打上相应标签。相比其他方案,HCR通过研究员团队,,把消费者行为推理思路进行抽象,得到可以用于自动分析的方法规则,记录到规则知识库。该规则知识库是对消费者研究的经验浓缩,覆盖大量常规行为场景,并具有相当的洞察深度(如可以推演出生活方式等深层次标签),这是当前基于纯技术驱动的分析方法所无法做到的。

n 规则推演引擎自动分析常规标签标注:基于分析规则库,挖掘算法人员研发了智能推演算法与自动处理程序,可快速计算消费者相关行为的统计/分布特性,并结合规则库自动计算得到消费者的标签(以概率值形式代表可能性)。自动推演引擎解决了符合规则特征的海量用户的标签快速推演,模式具有独创性,相关算法正申请专利中。

n 机器学习算法给更多消费者打标签。实际分析中,很多标签所对应的行为特点是隐性的,无法被发现和规则抽象。此时,挖掘算法人员进一步通过机器学习算法(有监督学习加推荐计算),通过已标注标签的消费者的行为特性,来推导大量未标注/新用户的特性标签,。这种机器学习的模式通过已分析消费者的结果,极大扩展了标签可标注的用户范围。

3 移动互联网用户标签分析应用

在初步建立相关分析模型后,我们对移动互联网用户的App使用行为大数据进行了标签分析的初步试验。目标数据来自HCR HiMobile业务的数百万移动互联网匿名用户的长期(2个月连续)App使用行为,共300多亿记录),得到了良好的效果。下图是其中某匿名用户分析得到的实际画像结果,非常具有代表性。

数据来源 : 大数据平台部@HCR

从图里可以看出,该匿名属性用户的特性通过行为已被画像结果有效勾勒出来(所有标签通过可信度概率标示,右侧灰色内容为分析得到的心理学属性标签)。无论目标描述的特性范围和深度,都比其他系统有较大的优势。

4 HCR消费者画像的未来

在大数据产业链中,HCR的定位是数据洞察者。而消费者画像分析作为典型的研究洞察服务,将逐步成为HCR的核心竞争力,在未来得到不断地加强和广泛应用。主要的应用模式包括:

l 作为HCR所有消费者研究业务的基础分析功能,帮助研究员在研究业务中洞察消费者的群体/个体特性。

l 为具有消费者画像能力的企业(如电商),提供更多角度的用户画像分析结果,作为其自身用户画像的有效补充,从而大大增加其产品推荐的精度与适用性。

l 为具有用户行为大数据但缺乏用户画像能力的大量B2C企业(尤其移动互联网企业),以标准化API的方式,提供快速的标签化分析服务,帮助企业轻松获得用户标签化分析能力,从而将分析结果轻松应用于后续的业务服务中

在后续的研究工作中,HCR的消费者画像团队将继续完善现有行为规则库和算法模型。并针对更多行为数据空间(如搜索和浏览),扩展标签的分析能力,力求使HCR消费者画像分析成为最具竞争力的消费者洞察服务。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容