Elasticsearch 基于时间还是分库索引

背景:

搜索接口性能慢,数据量大

业务背景:有1000家公司,不同公司数据量差异大,且越近的时间的数据使用到的概率越大。

方案一:按公司建索引,每家公司一个索引

有点:技术实现简单。

缺点:1、出故障重建索引效率慢。2、可扩展性不强

方案二: 热点数据单独索引,历史数据按时间进行索引

常用数据切分方案参考:Sizing Elasticsearch 

下面重点介绍下“基于时间的索引” (time-based indices) 的相关技巧

1、如何选择划分的时间范围

根据数据的增长速度不同 可以按天(索引名类似2019-09-24),按月(索引名类似2019-09),按年(索引名类似2019)进行划分

2、设计一个索引模板

对于我们业务来说,其实每个索引除了索引名称不同以外,其他的都是一样的,所以我们可以设计一个模板,用于每次索引的创建。这里需要用到就 ES 的 Index Templates 机制。

Index Templates 的基本原理是:首先预定义一个或多个 “索引模板”(index template,其中包括 settings 和 mappings 配置);然后在创建索引时,一旦索引名称匹配了某个 “索引模板”,ES 就会自动将该 “索引模板” 包含的配置(settings 和 mappings)应用到这个新创建的索引上面。

以业务为例,假设我们的 ES 索引需求如下:

按越索引(索引名称形如 business-2019-09)

每天的数据按所属的月份存入对应月份的索引

搜索的时候,希望搜索范围是所有的索引(借助 alias)

基于上述索引需求,对应的 “索引模板” 可以设计为:

$ curl -XPUT http://localhost:9200/_template/business_template -d'{

  "template": "business-*",

  "settings": {

    "number_of_shards": 1

  },

  "mappings": {

    "log": {

      "dynamic": false,

      "properties": {

        "content": {

          "type": "string"

        },

        "created_at": {

          "type": "date",

          "format": "dateOptionalTime"

        }

      }

    }

  },

  "aliases": {

    "search-business": {}

  }

}'

说明:

创建索引时,如果索引名称的格式形如 “business-*”,ES 会自动将上述 settings 和 mappings 应用到该索引

aliases 的配置,告诉 ES 在每次创建索引时,自动为该索引添加一个名为 “search-business” 的 alias(别名)

索引与搜索

基于上述 “索引模板” 的设计,索引与搜索的策略就很直接了。

索引策略:每天的数据,只索引到当月对应的索引。比如,2019 年9 月 24 日这天的数据,只索引到 business-2019-09 这个索引当中。

搜索策略:因为搜索需求是希望全量搜索,所以在搜索的时候,索引名称使用 “search-business” 这个 alias 即可。

更多关于 “如何有效管理基于时间的索引” 的技巧,可以参考 Managing Elasticsearch time-based indices efficiently

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容