clickhouse使用一些优化和经验

一些经验

1,查询强烈要求带上分区键过滤和主键过滤,如 where day = today() and itime = now()。

2,建表的时候,选择合适的分区键和排序键是优化的关键。

3,如果不允许重复主键(且不要求去重时效性),建议使用表类型:ReplicatedReplacingMergeTree 建表语句可参考https://clickhouse.yandex/docs/en/operations/table_engines/replacingmergetree/ ,注意只能保证单节点的数据不重复,无法保证集群的。

4,如果要对某一列过滤,且该列非partition key和orderby key, 且该列过滤前后数据量差异较大,建议使用prewhere clause过滤。参考:https://clickhouse.yandex/docs/en/query_language/select/#prewhere-clause

5,日期和时间使用Date, DateTime类型,不要用String类型。

6,建表时,强烈建议低基数(基数小于10000)且类型为String的列,使用LowCardinality特性,例如国家(country),操作系统(os)皆可用LowCardinality。查询效益提高可以40~50%,具体参考https://altinity.com/blog/2019/3/27/low-cardinality

7,为了使复杂查询尽量本地完成,提前减小数据量和网络传输,加快查询速度,创建分布式表时,尽量按照主键hash分shard。例如欲加快select count(distinct uid) from table_all group by country, os的查询速度. 创建分布式表table_all时,shard key为cityHash64(country, os),hash函数参考https://clickhouse.tech/docs/en/sql-reference/functions/hash-functions/

8,计算不同维度组合的指标值时,用with rollup或with cube替代union all子句。

9,建表时,请遵守命名规范:分布式表名 = 本地表名 + 后缀"_all"。 select请直接操作分布式表。

10,官方已经指出Nullable类型几乎总是会拖累性能,因为存储Nullable列时需要创建一个额外的文件来存储NULL的标记,并且Nullable列无法被索引。因此除非极特殊情况,应直接使用字段默认值表示空,或者自行指定一个在业务中无意义的值(例如用-1表示没有商品ID)

11,稀疏索引不同于mysql的B+树,不存在最左的原则,所以在ck查询的时候,where条件中,基数较大的列(即区分度较高的列)在前,基数较小的列(区分度较低的列)在后。

12,多表Join时要满足小表在右的原则,右表关联时被加载到内存中与左表进行比较

13,多维分析, 查询列不宜过多, 过滤条件带上分区筛选 (select dim1, dim2, agg1(xxx), agg2(xxx) from table where xxxx group by dim1, dim2 )

14,禁止SELECT *, 不能拉取原始数据!!!! (clickhouse不是数据仓库, 纯粹是拉原始表数据的查询应该禁止,如 select a, b, c, f, e, country from xxx )

分区键和排序键

分区键和排序键理论上不能修改,在建表建库的时候尽量考虑清楚

0,事实表必须分区,分区粒度根据业务特点决定,不宜过粗或过细。我们当前都是按天分区,按小时、周、月分区也比较常见(系统表中的query_log、trace_log表默认就是按月分区的)。

1,分区键能过滤大量数据,分区键建议使用toYYYYMMDD()按天分区,如果数据量很少,100w左右,建议使用toYYYYMM()按月分区,过多的分区会占用大量的资源,会对集群的稳定性造成很大的影响。

2,分区键必须使用date和datetime字段,避免string类型的分区键

3,每个sql必须要用分区键,否则会导致大量的数据被读取,到了集群的内存限制直接拒绝

4,排序键也是一个非常重要的过滤条件,考虑到ck是OLAP 库,排序键默认也是ck的主键,loap库建议分区键要使用基数比较少的字段,比如country就比timestramp要好。

5,不要使用过长的分区键,主键 。

6,CK的索引非MySQL的B树索引,而是类似Kafka log风格的稀疏索引,故不用考虑最左原则,但是建议基数较大的列(即区分度较高的列)在前,基数较小的列(区分度较低的列)在后。另外,基数特别大的列(如订单ID等)不建议直接用作索引。

分区数

分区数过多会导致一些致命的集群问题。不建议分区数粒度过细,不建议分区数过多,经验来看,10亿数据建议1-10个分区差不多了,当然需要参考你的硬件资源如何。

1,select 查询性能降低,分区数过多会导致打开大量文件句柄,影响集群。

2,分区数过多会导致集群重启变慢,zk压力变大,insert变慢等问题。

https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/custom-partitioning-key/

image2021-7-13_9-26-37.png

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容