好车

开着二三十万的车和我的十万出头的车感觉也差不多,只是底盘高了点,动力足了点,座椅舒适一点。

图片发自简书App

图片发自简书App

图片发自简书App

图片发自简书App

图片发自简书App

图片发自简书App


今天开车到市区本来想着加班,结果和谐大厦和列里路客户解管完了之后就想去附近图书馆看书,看了一本国富国穷,分享下摘抄的内容:

有得必有失,有失必有得

独立的人民是为自己冒险,而不是为了他人,愿意并渴望冒险并享受胜利的果实

相见本是双向的

锲而不舍,充满活力,不可抗拒,聪明能干,颇有耐性

看到五点左右本来计划去打篮球,结果人数太多就还了车自己坐地铁回家了。晚上整理了房子坐书桌前又翻了一会书,睡觉。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容

  • 宿舍响起的悠扬琴声 是你谱写的人生乐章 活泼好动的你 只有在这一刻显得格外恬静 有点微胖的手指在纤细的琴弦上娴熟的...
    丹止阅读 175评论 0 0
  • “会计是商业语言,随着商业环境和科技变化,财务也将发生革命性变化。” 随着科技进步与商业创新,企业财务信息化也从1...
    寻与寻阅读 871评论 0 1
  • 1 比对的是:相似菌参考基因和使用seqtk随机抽取出来的转录组数据。 2 bowtie2做index 1)使用方...
    简单点lili阅读 3,198评论 0 2
  • 1. Machine Learning Problems (a) 1. BF,2. C,3. AD,4. G,5....
    谢小帅阅读 481评论 0 0
  • 在中国,九九重阳这件事,是很久以前就有了,九为阳数,双九重阳。这一天,聚友啊、爬山啊、插茱萸啊等等,都是它的...
    意心意扬阅读 207评论 0 2