(20)图像分割——FCN

    FCN是全卷积神经网络,用于图像语义分割,将图像级别的分类扩展到像素级别的分类。FCN将传统网络后面的全连接层换成了卷积层,这样网络输出不再是类别而是 heatmap;同时为了解决因为卷积和池化对图像尺寸的影响,提出使用上采样的方式恢复。其网络结构如图:


FCN网络结构

    此处的上采样即是反卷积(Deconvolution)。反卷积和卷积类似,都是相乘相加的运算。只不过后者是多对一,前者是一对多。而反卷积的前向和后向传播,只用颠倒卷积的前后向传播即可。反卷积操作如下所示:


卷积与反卷积

    文章采用的网络经过5次卷积+池化后,图像尺寸依次缩小了 2、4、8、16、32倍,对最后一层做32倍上采样,就可以得到与原图一样的大小。但是仅对第5层做32倍反卷积(deconvolution),得到的结果不太精确。于是将第 4 层和第 3 层的输出也依次反卷积。并将最终结果合在一起。如图:


不同层均做反卷积


不同层反卷积效果

    可以看出从第3层开始做上采样的插值结果最精细。

     其他模型细节参考https://zhuanlan.zhihu.com/p/22976342;https://blog.csdn.net/zizi7/article/details/77093447

延伸:

    FCN得到的图像分割比较粗糙,目前用的比较多的有前端使用FCN进行特征的粗略提取,后端使用CRF/MRF优化前端的输出,最后得到分割图。

    1、全连接条件随机场

    对于每个像素i,具有类别标签x_{i} ,还有对应的观测值y_{i} ,这样每个像素点作为节点,像素与像素间的关系作为边,即构成了一个条件随机场。而且我们通过观测变量y_{i} 来推测像素i,对应的类别标签x_{i} 。条件随机场如下:

条件随机场

    条件随机场符合吉布斯分布:(此处的x即上面说的观测值)

    其中E(x|I )是能量函数,I 为全局观测量。

能量函数

    等式右边第一项为一元势函数,即来自于前端FCN的输出;第二项为二元势函数,描述像素点与像素点之间的关系,鼓励相似像素分配相同的标签,而相差较大的像素分配不同标签,而这个“距离”的定义与颜色值和实际相对距离有关。所以这样CRF能够使图片尽量在边界处分割。二元势函数描述的是每一个像素与其他所有像素的关系,所以叫“全连接”。

    深度学习+概率图模型(PGM)是一种趋势。其实DL说白了就是进行特征提取,而PGM能够从数学理论很好的解释事物本质间的联系。

    概率图模型的网络化。因为PGM通常不太方便加入DL的模型中,将PGM网络化后能够是PGM参数自学习,同时构成end-to-end的系统。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,496评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,407评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,632评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,180评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,198评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,165评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,052评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,910评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,324评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,542评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,711评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,424评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,017评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,668评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,823评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,722评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,611评论 2 353

推荐阅读更多精彩内容