探索与实现 MobileNet V3 网络结构

MobileNetV3是由Google在2019年3月21日提出的网络架构,参考arXiv论文,其中包括两个子版本,即Large和Small。

源码参考https://github.com/SpikeKing/mobilenet_v3/blob/master/mn3_model.py

重点:

  1. PyTorch实现MobileNetV3架构;
  2. h-swish和h-sigmoid的设计;
  3. 新的MobileNet单元;
  4. SE结构和Residual结构;
  5. Last Stage:提前Avg Pooling,和使用1x1卷积;

网络结构:

网络结构

整体架构

MobileNetV3的网络结构可以分为三个部分:

  • 起始部分:1个卷积层,通过3x3的卷积,提取特征;
  • 中间部分:多个卷积层,不同Large和Small版本,层数和参数不同;
  • 最后部分:通过两个1x1的卷积层,代替全连接,输出类别;

网络框架如下,其中参数是Large体系:

Overall

源码如下:

def forward(self, x):
    # 起始部分
    out = self.init_conv(x)

    # 中间部分
    out = self.block(out)

    # 最后部分
    out = self.out_conv1(out)
    batch, channels, height, width = out.size()
    out = F.avg_pool2d(out, kernel_size=[height, width])
    out = self.out_conv2(out)

    out = out.view(batch, -1)
    return out

起始部分

起始部分,在Large和Small中均相同,也就是结构列表中的第1个卷积层,其中包括3个部分,即卷积层、BN层、h-switch激活层。

Start

源码如下:

init_conv_out = _make_divisible(16 * multiplier)
self.init_conv = nn.Sequential(
    nn.Conv2d(in_channels=3, out_channels=init_conv_out, kernel_size=3, stride=2, padding=1),
    nn.BatchNorm2d(init_conv_out),
    h_swish(inplace=True),
)

h-switch 和 h-sigmoid

h-switch是非线性激活函数,公式如下:

Formula

图形如下:

h-switch

源码:

out = F.relu6(x + 3., self.inplace) / 6.
return out * x

h-sigmoid是非线性激活函数,用于SE结构:

源码:

return F.relu6(x + 3., inplace=self.inplace) / 6.

图形如下:

h-sigmoid

卷积的计算公式

  • 输入图片:W×W
  • 卷积核:F×F
  • 步长:S
  • Padding的像素值:P
  • 输出图片大小为:N×N

公式:

N = (W − F + 2P ) / S + 1

其中,向下取整,多余的像素不参于计算。


中间部分

中间部分是多个含有卷积层的块(MobileBlock)的网络结构,参考,Large的网络结构,Small类似:

Large

其中:

  • SE:Squeeze-and-Excite结构,压缩和激发;
  • NL:Non-Linearity,非线性;HS:h-swish激活函数,RE:ReLU激活函数;
  • bneck:bottleneck layers,瓶颈层;
  • exp size:expansion factor,膨胀参数;

每一行都是一个MobileBlock,即bneck。

源码:

self.block = []
for in_channels, out_channels, kernal_size, stride, nonlinear, se, exp_size in layers:
    in_channels = _make_divisible(in_channels * multiplier)
    out_channels = _make_divisible(out_channels * multiplier)
    exp_size = _make_divisible(exp_size * multiplier)
    self.block.append(MobileBlock(in_channels, out_channels, kernal_size, stride, nonlinear, se, exp_size))
self.block = nn.Sequential(*self.block)

MobileBlock

三个必要步骤:

  1. 1x1卷积,由输入通道,转换为膨胀通道;
  2. 3x3或5x5卷积,膨胀通道,使用步长stride;
  3. 1x1卷积,由膨胀通道,转换为输出通道。

两个可选步骤:

  1. SE结构:Squeeze-and-Excite;
  2. 连接操作,Residual残差;步长为1,同时输入和输出通道相同;

其中激活函数有两种:ReLU和h-swish。

结构如下,参数为特定,非通用:

MobileBlock

源码:

def forward(self, x):
    # MobileNetV2
    out = self.conv(x)  # 1x1卷积
    out = self.depth_conv(out)  # 深度卷积

    # Squeeze and Excite
    if self.SE:
        out = self.squeeze_block(out)

    # point-wise conv
    out = self.point_conv(out)

    # connection
    if self.use_connect:
        return x + out
    else:
        return out

子步骤如下:

第1步:1x1卷积

self.conv = nn.Sequential(
    nn.Conv2d(in_channels, exp_size, kernel_size=1, stride=1, padding=0),
    nn.BatchNorm2d(exp_size),
    activation(inplace=True)
)

第2步:膨胀的卷积操作

groups是exp值,每个通道对应一个卷积,参考,并且不含有激活层。

self.depth_conv = nn.Sequential(
    nn.Conv2d(exp_size, exp_size, kernel_size=kernal_size, stride=stride, padding=padding, groups=exp_size),
    nn.BatchNorm2d(exp_size),
)

第3步:1x1卷积

self.point_conv = nn.Sequential(
    nn.Conv2d(exp_size, out_channels, kernel_size=1, stride=1, padding=0),
    nn.BatchNorm2d(out_channels),
    activation(inplace=True)
)

可选操作1:SE结构

  1. 池化;
  2. Squeeze线性连接 + RELU + Excite线性连接 + h-sigmoid
  3. resize;
  4. 权重与原值相乘;

源码:

class SqueezeBlock(nn.Module):
    def __init__(self, exp_size, divide=4):
        super(SqueezeBlock, self).__init__()
        self.dense = nn.Sequential(
            nn.Linear(exp_size, exp_size // divide),
            nn.ReLU(inplace=True),
            nn.Linear(exp_size // divide, exp_size),
            h_sigmoid()
        )

    def forward(self, x):
        batch, channels, height, width = x.size()
        out = F.avg_pool2d(x, kernel_size=[height, width]).view(batch, -1)
        out = self.dense(out)
        out = out.view(batch, channels, 1, 1)

        return out * x

可选操作2:残差结构

最终的输出与原值相加,源码如下:

self.use_connect = (stride == 1 and in_channels == out_channels)

if self.use_connect:
    return x + out
else:
    return out

最后部分

最后部分(Last Stage),通过将Avg Pooling提前,减少计算量,将Squeeze操作省略,直接使用1x1的卷积,如图:

Last Stage

源码:

out = self.out_conv1(out)
batch, channels, height, width = out.size()
out = F.avg_pool2d(out, kernel_size=[height, width])
out = self.out_conv2(out)
网络结构

第1个卷积层conv1,SE结构同上,源码:

out_conv1_in = _make_divisible(96 * multiplier)
out_conv1_out = _make_divisible(576 * multiplier)
self.out_conv1 = nn.Sequential(
    nn.Conv2d(out_conv1_in, out_conv1_out, kernel_size=1, stride=1),
    SqueezeBlock(out_conv1_out),
    h_swish(inplace=True),
)

第2个卷积层conv2:

out_conv2_in = _make_divisible(576 * multiplier)
out_conv2_out = _make_divisible(1280 * multiplier)
self.out_conv2 = nn.Sequential(
    nn.Conv2d(out_conv2_in, out_conv2_out, kernel_size=1, stride=1),
    h_swish(inplace=True),
    nn.Conv2d(out_conv2_out, self.num_classes, kernel_size=1, stride=1),
)

最后,调用resize方法,将Cx1x1转换为类别,即可

out = out.view(batch, -1)

除此之外,还可以设置multiplier参数,等比例的增加和减少通道的个数,满足8的倍数,源码如下:

def _make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

至此,MobileNet V3的网络结构已经介绍完成。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容