局部异常因子算法-LOF

局部异常因子算法-LOF
1、计算k-distance of p:点p的第k距离,也就距离p第k远的点的距离,不包括p。
2、计算k-distance neighborhood of p:点p的第k距离邻域,就是p的第k距离以内的所有点,包括第k距离
3、计算reach-distance:可达距离,若小于第k距离,则可达距离为第k距离,若大于第k距离,则可达距离为真实距离
4、计算local reachability density:局部可达密度
5、计算local outlier factor:局部离群因子

K-Means聚类算法
1、 随机选择初始的两个质心
2、 其他点根据离质心的距离远近分类
3、 计算分好的类的平均值,重新赋值给质心
4、 返回2,直到质心不变

#include "stdafx.h"
#include<vector>
#include<algorithm>
#include<iostream>
using namespace std;

typedef vector<vector<int>> Mat;
//定义分类后返回结果,包括两个质心和两个向量
typedef struct{
    int c1;
    int c2;
    vector<int> vect1;
    vector<int> vect2;
}classifyResult;

//求向量的最大值
int maxV(const vector<int>& obj){
    int max = 0;
    for (int i = 0; i < obj.size(); ++i){
        if (obj[i]>max)
            max = obj[i];
    }
    return max;
}

//返回最大值索引
int maxIndex(const vector<int>& obj){
    int max = 0 , index_ = 0;
    for (int i = 0; i < obj.size(); ++i){
        if (obj[i]>max){
            max = obj[i];
            index_ = i;
        }
    }
    return index_;
}

//返回平均值
double meanV(const vector<int>& obj){
    double sum = 0;
    for (int i = 0; i < obj.size(); ++i){
        sum += obj[i];
    }
    return sum / obj.size();
}

//返回和
int sumV(const vector<int>& obj){
    int sum_ = 0;
    for (int i = 0; i < obj.size(); ++i){
        sum_ += obj[i];
    }
    return sum_;
}

//计算点p的k-distance
//obj:数据集  p:点p的索引  k:
int calKDistance(const vector<int>& obj,int p, int k){
    vector<int> k_near_distance(k, 2147483647);//定义k邻近的向量,存放p点的最近的k个点的距离
    
    //计算k-distance
    for (int j = 0; j < obj.size(); ++j){
        if (p == j)//如果轮到的点 是p自己,直接进入下一次循环
            continue;
        if (int tmp = abs(obj[p] - obj[j]) < maxV(k_near_distance))
            k_near_distance[maxIndex(k_near_distance)] = tmp;
    }
    return maxV(k_near_distance);
}

//计算点p的k-distance neghborhood of p
//obj:数据集  p:点p的索引  k:
vector<int> calKDistanceNeghborhood(const vector<int>& obj, int p, int k){
    vector<int> k_neighborhood;//定义第k距离邻域,存储邻域点的索引
    
    //由于k距离邻域是不确定的,所有又得循环一边,找出所有小于等于k-distance的点(第k距离邻域是否包含点p?)
    //即计算k-distance neghborhood of p
    for (int j = 0; j < obj.size(); ++j){
        if (p == j)//如果轮到的点 是p自己,直接进入下一次循环
            continue;
        if (abs(obj[p] - obj[j]) <= calKDistance(obj, p, k))
            k_neighborhood.push_back(j);
    }
    return k_neighborhood;
}


//计算点o到点p的可达距离reach-distance
//obj:数据集  o:点o的索引  p:点p的索引
int calReachDistance(const vector<int>& obj, int p, int o, int k){
    int reach_distance = calKDistance(obj, o, k);
    if (int tmp = abs(obj[p] - obj[o]) > reach_distance)
        reach_distance = tmp;
    return reach_distance;
}


//计算p点的局部可达密度
//obj:数据集  p:点p的索引  k:
double calLocalReachabilityDensity(const vector<int>& obj, int p, int k){
    double lrdtmp = 0.0;
    vector<int> k_neighborhood = calKDistanceNeghborhood(obj, p, k);
    for (int i = 0; i < k_neighborhood.size(); ++i)
        lrdtmp += calReachDistance(obj, p, k_neighborhood[i], k);
    return 1.0 / (lrdtmp / k_neighborhood.size());
}

//数据预处理,LOF算法过滤局部异常因子
void preDealDate(vector<int>& obj,int k){
}

//数据分类
classifyResult classifyVect(vector<int>& obj){
    classifyResult result;
    if (obj.empty()){
        cout << "empty" << endl;
        return result;
    }
    int len = obj.size();

    int dist1, dist2;//定义到两个质心的两个距离
    //排序
    sort(obj.begin(), obj.end());

    //随机选择两个初始质心,为保证选的质心不属于同一类,目前先选最小和最大点
    int c1 = obj[0], c2 = obj[len-1];

    //如果最大值等于最小值,所有的数都是相同的,结果分成一类就好
    if (c1 == c2){
        result = { c1, c2, obj, obj };
        return result;
    }
    
    while (true)
    {
        vector<int> vect1, vect2;//定义两个向量,分别存储分好的两类数据
        int sum1 = 0, sum2 = 0;
        //计算其他数到质心的L1-Distance,离谁更近归为哪类
        for (int i = 0; i < len; ++i){
            dist1 = abs(obj[i] - c1);
            dist2 = abs(obj[i] - c2);
            if (dist1 <= dist2){//距离c1更近,把该数归为c1类
                vect1.push_back(obj[i]);
                sum1 += obj[i];
            }
            else//距离c2更近,把该数归为c2类
            {
                vect2.push_back(obj[i]);
                sum2 += obj[i];
            }
        }

        //分别计算两类的平均值,替换c1,c2
        if (c1 == sum1 / vect1.size() && c2 == sum2 / vect2.size()){
            result = { c1, c2, vect1, vect2 };
            return result;
        }
        c1 = sum1 / vect1.size();
        c2 = sum2 / vect2.size();
    }
    return result;
}

int main(){

    int a[31] = { 1, 2, 4, 7, -1, 3, 2, 5, 7, 8, 0, 5, 3, 2 ,99,87,67,56,78,99,100,97,56,89,98,97,96,95,94,93,190};
    //int a[5] = { 1,1,2,0,3 };
    vector<int> s(a,a+31);

    classifyResult result = classifyVect(s);
    vector<int> vect1 = result.vect1;
    vector<int> vect2 = result.vect2;


    cout << "原始数据是:\n";
    for (int i = 0; i < s.size(); ++i)
        cout << s[i] << " ";
    cout << "\n";
    cout << "分成两类后的数据分别是:\n";
    cout << "vector1=\n";
    for (int i = 0; i < vect1.size(); ++i)
        cout << vect1[i] << " ";
    cout << "\n";
    cout << "vector2=\n";
    for (int i = 0; i < vect2.size(); ++i)
        cout << vect2[i] << " ";
    cout << "\n";

    cout << "质心分别是c1=" << result.c1 << " c2=" << result.c2<<"\n";

}


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容

  • 背景 一年多以前我在知乎上答了有关LeetCode的问题, 分享了一些自己做题目的经验。 张土汪:刷leetcod...
    土汪阅读 12,723评论 0 33
  • 今晚说好的在反思,不吐槽,但是好像心中各种怨,不吐不行。 片段一:融化 伟大的KZ大人难得下午去了公寓现场,他出厂...
    梅子Mey阅读 342评论 5 0