Java基于opencv实现图像数字识别(二)—基本流程

Java基于opencv实现图像数字识别(二)—基本流程

做一个项目之前呢,我们应该有一个总体把握,或者是进度条;来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程。

我做的主要是表格中数字的识别,但这个不是重点。重点是通过这个我们可以举一反三,来实现我们自己的业务。

图像的识别主要分为两步:图片预处理和图像识别;这两步都很重要

图像预处理:
1、 图像灰度化;二值化
2、 图像降噪,去除干扰线
3、 图像腐蚀、膨胀处理
4、 字符分割
5、 字符归一化

图像识别:
1、 特征值提取
2、 训练
3、 测试

灰度化:

在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值;因此,灰度图像每个像素点只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。一般常用的是加权平均法来求像素点的灰度值

常见的加权方法如下:
1:)Gray = B ; Gray = G ; Gray = R
2:)Gray = max({B , G , R})
3:)Gray = (B + G + R) / 3
4:)Gray = 0.072169 * B + 0.715160 * G + 0.212671 * R
5:)Gray = 0.11 * B + 0.59 * G + 0.3 * R

这几种方法中,第一为分量法,即用RGB三个分量的某一个分量作为该点的灰度值;第二种方法为最大值法,将彩色图像中的三个分量亮度的最大值作为灰度图的灰度值;第三种方法是将彩色图像中的三分量求平均得到一个灰度图;后两种都属于加权平均法,其中第四种是opencv开发库所采用的一种求灰度值算法;第五种为从人体生理学角度所提出的一种求灰度值算法(人眼对绿色的敏感最高,对蓝色敏感最低)

二值化:

图像的二值化,就是将图像上的像素点的灰度值设置位0或255这两个极点,也就是将整个图像呈现出明显的只有黑和白的视觉效果

图像降噪:

就是处理掉一些干扰因素;

主要的降噪算法

滤波类:通过设计滤波器对图像进行处理。特点是速度往往比较快,很多卷积滤波可以借助快速傅里叶变化来加速

稀疏表达类:自然图片之所以看起来不同于随机噪音/人造结构,是因为大家发现他们总会在某一个横型下存在稀疏表达。而我们想排除的噪音往往无法被稀疏化。基于这个判别式模型,用稀疏性来约束自然图像,在很多逆问题里取得了拔群的效果

外部先验:如果从有噪音的图片本身无法找到规律,我们也可以借助其他类似但又没有噪音的图片,来总结图片具有的固有属性。这一类方法利用的外部图片来创造先验条件,然后用于约束需要预测的图片。最有代表性就是混合高斯模型

聚类低秩:除了可稀疏性,低秩性也是自然图片常见的一个特性。数学上,可稀疏表达的数据可以被认为是在Union of low-dimensional subspaces;而低秩数据则是直接存在于一个Low-dimensional subspace。这个更严格的限制往往也可以取得很好的降噪效果。

深度学习(Deep Learning):这类可以归于外部先验的子类,如果说解决逆问题的关键,是寻找一个好的图像约束器,那么我们为什么不用一个最好的约束器?深度学习方法的精髓,就在于通过大量的数据,学习得到一个高复杂度(多层网络结构)的图片约束器,从而将学习外部先验条件这一途径推到极限。近期的很多这类工作,都是沿着这一思路,取得了非常逆天的效果。

字符分割:就是把图片有用的部分一个个分割下来;字符分割有很多方法,但并不是每一种方法都是万能的,我们需要根据自己的业务来调整;常见的就是投影法和连通域法

投影法:就是分析每一维上黑色像素点的个数(假设是二值化的图像),然后设置一个阙值,根据这个阙值来分割图片

图像腐蚀、膨胀处理

腐蚀:图像的一部分区域与指定的核进行卷积,求核的最小值并赋值给指定区域。 腐蚀可以理解为图像中高亮区域的领域缩小。

膨胀:图像的一部分区域与指定的核进行卷积,求核的最大值并赋值给指定区域。 膨胀可以理解为图像中高亮区域的领域扩大。

字符的归一化:

就是将分割好的图像内的字符归一化到一个标准模板大小;归一化的理想结果就是:归一化到标准模板大小;倾斜校正;笔画宽度归一化;字形归一化。

注:
本文章参考了很多博客,感谢;主要是跟着一个博客来实现的https://blog.csdn.net/ysc6688/article/category/2913009(也是基于opencv来做的,只不过他是用c++实现的)感谢

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容