knn

import numpy as np

class KNearestNeighbor(object):

""" a kNN classifier with L2 distance """

def __init__(self):

pass

def train(self, X, y):

"""

Train the classifier. For k-nearest neighbors this is just

memorizing the training data.

Inputs:

- X: A numpy array of shape (num_train, D) containing the training data

consisting of num_train samples each of dimension D.

- y: A numpy array of shape (N,) containing the training labels, where

y[i] is the label for X[i].

"""

self.X_train = X

self.y_train = y

def predict(self, X, k=1, num_loops=0):

"""

Predict labels for test data using this classifier.

Inputs:

- X: A numpy array of shape (num_test, D) containing test data consisting

of num_test samples each of dimension D.

- k: The number of nearest neighbors that vote for the predicted labels.

- num_loops: Determines which implementation to use to compute distances

between training points and testing points.

Returns:

- y: A numpy array of shape (num_test,) containing predicted labels for the

test data, where y[i] is the predicted label for the test point X[i].

"""

if num_loops == 0:

dists = self.compute_distances_no_loops(X)

elif num_loops == 1:

dists = self.compute_distances_one_loop(X)

elif num_loops == 2:

dists = self.compute_distances_two_loops(X)

else:

raise ValueError('Invalid value %d for num_loops' % num_loops)

return self.predict_labels(dists, k=k)

def compute_distances_two_loops(self, X):

"""

Compute the distance between each test point in X and each training point

in self.X_train using a nested loop over both the training data and the

test data.

Inputs:

- X: A numpy array of shape (num_test, D) containing test data.

Returns:

- dists: A numpy array of shape (num_test, num_train) where dists[i, j]

is the Euclidean distance between the ith test point and the jth training

point.

"""

num_test = X.shape[0]

num_train = self.X_train.shape[0]

dists = np.zeros((num_test, num_train))

for i in xrange(num_test):

for j in xrange(num_train):

#####################################################################

# TODO:                                                            #

# Compute the l2 distance between the ith test point and the jth    #

# training point, and store the result in dists[i, j]. You should  #

# not use a loop over dimension.                                    #

#####################################################################

# pass

dists[i][j] = np.sqrt(np.sum(np.square(X[i] - self.X_train[j])))

#####################################################################

#                      END OF YOUR CODE                            #

#####################################################################

return dists

def compute_distances_one_loop(self, X):

"""

Compute the distance between each test point in X and each training point

in self.X_train using a single loop over the test data.

Input / Output: Same as compute_distances_two_loops

"""

num_test = X.shape[0]

num_train = self.X_train.shape[0]

dists = np.zeros((num_test, num_train))

for i in xrange(num_test):

#######################################################################

# TODO:                                                              #

# Compute the l2 distance between the ith test point and all training #

# points, and store the result in dists[i, :].                        #

#######################################################################

# pass

dists[i] = np.sqrt(np.sum(np.square(self.X_train - X[i]), axis = 1))

#######################################################################

#                        END OF YOUR CODE                            #

#######################################################################

return dists

def compute_distances_no_loops(self, X):

"""

Compute the distance between each test point in X and each training point

in self.X_train using no explicit loops.

Input / Output: Same as compute_distances_two_loops

"""

num_test = X.shape[0]

num_train = self.X_train.shape[0]

dists = np.zeros((num_test, num_train))

#########################################################################

# TODO:                                                                #

# Compute the l2 distance between all test points and all training      #

# points without using any explicit loops, and store the result in      #

# dists.                                                                #

#                                                                      #

# You should implement this function using only basic array operations; #

# in particular you should not use functions from scipy.                #

#                                                                      #

# HINT: Try to formulate the l2 distance using matrix multiplication    #

#      and two broadcast sums.                                        #

#########################################################################

# pass

dists = np.sqrt(-2*np.dot(X, self.X_train.T) + np.sum(np.square(self.X_train), axis = 1) + np.transpose([np.sum(np.square(X), axis = 1)]))

#########################################################################

#                        END OF YOUR CODE                              #

#########################################################################

return dists

def predict_labels(self, dists, k=1):

"""

Given a matrix of distances between test points and training points,

predict a label for each test point.

Inputs:

- dists: A numpy array of shape (num_test, num_train) where dists[i, j]

gives the distance betwen the ith test point and the jth training point.

Returns:

- y: A numpy array of shape (num_test,) containing predicted labels for the

test data, where y[i] is the predicted label for the test point X[i].

"""

num_test = dists.shape[0]

y_pred = np.zeros(num_test)

for i in xrange(num_test):

# A list of length k storing the labels of the k nearest neighbors to

# the ith test point.

closest_y = []

#########################################################################

# TODO:                                                                #

# Use the distance matrix to find the k nearest neighbors of the ith    #

# testing point, and use self.y_train to find the labels of these      #

# neighbors. Store these labels in closest_y.                          #

# Hint: Look up the function numpy.argsort.                            #

#########################################################################

# pass

closest_y = self.y_train[np.argsort(dists[i])[:k]]

#########################################################################

# TODO:                                                                #

# Now that you have found the labels of the k nearest neighbors, you    #

# need to find the most common label in the list closest_y of labels.  #

# Store this label in y_pred[i]. Break ties by choosing the smaller    #

# label.                                                                #

#########################################################################

# pass

y_pred[i] = np.argmax(np.bincount(closest_y))

#########################################################################

#                          END OF YOUR CODE                            #

#########################################################################

return y_pred

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容

  • 前言: 以斯坦福cs231n课程的python编程任务为主线,展开对该课程主要内容的理解和部分数学推导。该课程相关...
    卑鄙的我_阅读 3,370评论 0 2
  • 一、前言 CS231n是斯坦福大学开设的一门深度学习与计算机视觉课程,是目前公认的该领域内最好的公开课。目前,该课...
    金戈大王阅读 4,765评论 3 7
  • 跟着cs231n assignment1的knn部分的notebook引导,把这个作业做完了。knn的算法本身很简...
    xionghuisquall阅读 5,218评论 0 1
  • 我是踢到深夜的一只瓶子 我是藏不住眼泪的瓶子 我是被捏疼的瓶子 瘦了下来 被你踢到深夜 你厌倦了 我便也停下来 风...
    张天狗阅读 195评论 0 1
  • 做一个简单的人, 看得清世间繁杂却不在心中留下痕迹。 整理一下自己的心情, 忘记那些不愉快的往事, 听听音乐,看看...
    时间刺客阅读 230评论 0 0