供应链域数据中台设计

供应链域数据中台设计

1 前言

受限于对业务掌握度及对应数据特性的了解,大数据平台更倾向海量的同构或异构数据采集,清洗,加工,存储。而提供的数据服务更多是对采集到数据进行汇总及分析。

供应链域数据中台专注供应链域业务数据,优势是具备熟练掌握相关业务的产品和开发,更了解业务和数据特性:

  • 为产品线提供准确及时的数据服务
  • 也为数分提供完善的数据脉络,帮助其更好对这些数据深层挖掘分析,再次提升数据价值

系统设计上也将考虑系统能做到能进能退:

  • 进则作为独立数据域的数据中台产品,逐渐完善自身特性
  • 退则作为一个数据域模块快速融入公司大数据中台

2 理论篇

有了存在意义和价值空间,接下来考虑如何构建。采用DDD构建数据中台的各类模型。结合当下情况分析,自顶向下的策略更适合。首先目标建立供应链域数据中台,顶层领域已限定供应链。其次该策略不受限于当前系统,适合用 DDD 领域逐级分解的建模方法。

2.1 领域模型界定

现阶段业务需求是给相关业务系统提供准确及时的供应链域数据服务,同时也是数据中台核心服务,所以作为主体的数据服务是毫无争议的核心域。

数据中台第二个重要功能是提供元数据字典服务,即提供有关联关系的元数据的脉络服务。

其展示该域下各数据实体的关联关系及链路节点出处,以及相关数据服务详情介绍等,可称之为数据治理,作用上区分可将数据治理归为通用域。数据治理和数据服务的共同基石则是数据,这里指出的就是数据中台另一个功能同时也是本质功能,打通数据孤岛对数据的采集加工和存储,这些就组成另外一个子域,归为支撑域。

数据中台域模型图:

<img src="https://javaedge.oss-cn-shanghai.aliyuncs.com/image-20240208232536015.png" style="zoom:50%;" />

系统架构设计模、领域模型界定完毕后,下面就是以领域模型为指导进行系统架构模型的设计。系统架构模型设计依然用 DDD。

搭建有自身特色的数据中台,决定我们没有可参考案例,为防过度设计,提前设定一个设计方针,即系统架构须是一个演进式,经得起破坏和重构,才能满足低成本,快建设,快试错。大而全系统架构设计虽也是我们向往,但现状不许。

2.2 数据中台系统设计模型

<img src="https://javaedge.oss-cn-shanghai.aliyuncs.com/image-20240208234304406.png" style="zoom:50%;" />

① 接口层

数据中台对外服务的统一入口:

  • 对接各种类型的访问请求,如restful 接口,api接口,RPC框架服务接口等
  • 提供服务适配,对各种类型接口提供请求参数和返回结果集的适配相关的服务

② 应用层

实现服务组合和编排,以快速满足业务需求。不可否认用户需求一直在变化。能做的就是如何快速响应这些变化,服务组合和重新编排,提升服务可重用性,降低重复功能的开发成本,提升开发效率,为业务的快速试错提供了很好支撑。

③ 领域层

该层实现核心业务逻辑,同时聚集了领域模型的聚合、聚合根、实体、值对象、领域服务和事件等领域对象,以及它们组合所形成的业务能力。通俗易懂的,是实现了业务处理逻辑的服务原子化,按业务逻辑将服务细分,细分后的原子服务将脱离具体的业务模式,为应用层的服务组合和编排提供“原材料”。

④ 基础层

贯穿所有层,为各层提供基础资源服务。包含MySQL,PG,ES,HBase和Redis等数据存储和缓存服务。

还有一部分重要组成就是公共服务,好产品离不开监控运维和相关日志服务,这些是保障系统健康的重要措施。

3 实践篇

3.1 供应链域数据中台系统架构设计

数据中台系统架构设计模型:

  • 数据治理将供应链全链路涉及到或者相关的所有子域的数据进行目录化管理
  • 数据服务则基于所有子域数据提供标准或者定制化的服务
  • 数据存储则主要依赖大数据平台和搜索,是基于数据中台的数据的量级和服务的便利性以及可用性考虑
  • 数据采集基本是 kafka 和 数据同步组件,基于数据的吞吐量和可靠性考虑

3.2 系统实现模型设计

数据中台数据流转模型(数据中台服务保障方案):

如图所示,按既定接口层/应用层/领域层/基础层设计,逐层封装,各层相互协作,对业务系统提供灵活的数据服务,很好地实现了各层分工,便于快速响应业务需求。

考虑到数据中台主要为业务系统提供数据服务,为保障数据服务的可靠性和及时性,还得兼顾系统性能和稳定,对数据服务做了冗余和归档服务。冗余的服务同时具备降级职责,提升服务 SAL 指标。

4 总结

基于 DDD 领域建模的供应链域数据中台设计基本完毕,紧接着就是后续流畅的开发工作。复盘过程,虽不甚完美,“先开枪后瞄准”至少在探索数据中台领域迈出第一步,那么成功就不会太远。

获取更多干货内容,记得关注我哦。

本文由博客一文多发平台 OpenWrite 发布!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,826评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,968评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,234评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,562评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,611评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,482评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,271评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,166评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,608评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,814评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,926评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,644评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,249评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,866评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,991评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,063评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,871评论 2 354

推荐阅读更多精彩内容