这篇文章的一部分稿子一年前就已写好,只是因为我实在缺乏这方面的专业知识,写出来的调侃居多,没啥营养。时至今日,大数据方面的知识我依然近乎为零,不过结合实际工作中遇到的数据分析与处理,聊聊自己的一点点心得。
大数据这个概念火了很多年了,我等吃瓜群众刚开始“不明觉厉”,直到现在每天被精准投放的广告与视频频繁轰炸,不禁感概:天下苦大数据久矣!
牢骚归牢骚,不过大数据本身也成为了这个时代的一种稀缺资源。当年马斯克成了世界首富后火出圈了,特斯拉对其大数据的掌控也被人津津乐道。最初吸引眼球的是特斯拉的自动驾驶数据,加上媒体的不断吹嘘,让人觉得不久之后,特斯拉就会凭借其鹤立鸡群的自动驾驶技术而独霸江湖!不过目前的现实是,无论从技术层面,还是政策层面来看,特斯拉的自动驾驶在中国市场并未取得明显的优势地位,华为的解决方案隐隐有着赶超的势头。另一方面,特斯拉的超级工厂对制造过程中的大数据收集与分析却被人所忽略,作为“第一性原理”的绝对践行者,特斯拉对造车理念的革新更让人充满了敬意。这也让我充满了疑惑,传统的欧美车企,数十年积累出的海量的生产数据,怎么在特斯拉这个后来者面前,显得那么轻于鸿毛?
也许,其中的一个原因就在,大数据的收集仅仅只是个开始,很多老牌的大公司仅仅做到这一步就停了下来,其实,更重要的工作是对收集到的数据进行数学建模,以期可以“预测未来的行为”。这种工作也有些年头了,20年前叫做statistical analysis,10年前叫data mining,5年前叫machine learning,最近就成了big data。在10年我其实有个机会可以转行做data mining,很可惜,没有如愿。只能继续留在工厂做社畜,每天面对的都是各种生产数据,之前是产品良率/不良率多些,现在是器件的各种性能参数以及表征它们的各种图形。
因此,我接触到了不是大数据,仅仅是管中窥斑般地做极为有限的数据,进行对比分析,找出造成数据波动的factor(诱因)。
总的来说,数据对比分析法的 3 个基本要素如下:
(1)数据对比需要在同一个标准上。
(2)数据对比需要建立样本数据的目标值(预期值)。
(3)分析出导致数据异常的影响因素。
统一数据的标准,这很好理解,只有同种类型的数据才能放在一起比较,不能拿A批次产品的电压值跟B批次产品的电流值进行比较。但是必须要考虑到process variation(工艺波动),比如设备别差异(同道工艺设备A与设备B的差别),原料别差异(材料供应商A与供应商B的差别),site别差异(工艺uniform所限而形成的差别),以及其他各种已知或未知的差异。记忆中印象最深的是气候所造成的差别!其实在理想的超净间中,室外气候的差异是可以屏蔽掉的,不过实际上总有些吊诡的时刻,比如说要在量产的产线中搬入新的设备,就得临时打开搬入口,并在设备搬入后再把搬入口封闭,不过有时开放搬入口对超净间造成的影响,却需要一段时间才能消除,比如说盛夏时湿度超过100%的空气,以及由此引发的异常静电损伤(ESD)。
因此,在选取数据时,最好要排除掉已知因素所造成的variation,即选取同设备、同材料、同Site以及同批次(或临近批次)的产品进行比较。
数据目标值的制定在工艺稳定时,往往是比较容易的。可是在新工艺、新产品、新结构以及新产线时,制定目标值就是件极其艰难,但却极为重要的事,尤其是还掺杂了技术以外的因素时,有过相关经历的人都懂,我也就不明说了,我只拿我减肥的事简单说明下。
我是个易胖体质,过段时间就得减减肥,不然身体臃肿得不行。从高中毕业到现在,体重从215斤下降到180斤,然后到160斤,之后就在160斤和180斤之间反复震荡。去年过年后开始的减肥,我决定数字化自己的减肥过程。哈哈,牛吹得有点大,其实就买了个智能体重秤而已,不光可以测量体重,还可以测量体脂、肌肉率、内脏脂肪率等等数据。撇开这些这些测量数据的准确性不讲(在实际生产中,其实很多数据是测不准的......),如果我们假设体重数据是准确的,那么这个数据也大有讲究。早上测还是晚上测?饭前测还是饭后测?运动完测还是脱光衣服测?都会到导致体重数据的波动。拿我的体重来说,不同的测量方式,会造成我的实时体重有2到3斤的波动。如果说,要评价一个新厂商供应的材料是否能导入生产,我要不要选一台状态更好的工艺设备进行process,再选选一台灵敏度不高的测试设备进行量测,最后再让一个头脑灵活的工程师来写评估报告呢?毕竟昨天晚上......
分析数据异常背后的影响因素时,往往需要一定的假设,这时候主观臆测和胡思乱想是不可取的。这时候,我们仿真工作的意义就出来了,简单来说,先把怀疑的因素统统当作输入的变量,进行交叉实验,看看仿真结果的变化是否与实际相吻合,然后列出相关因素的sensitivity,为下一步的实际确认工作指明优先级!
整个数据分析的过程,可能需要多次的循环,才能找到改善的方向。只有让数据分析得更有效率,更加自动化,产品才能更为快速地进化。也许,到了那时候,我的工作会被一串代码所取代,想到此处,我很矛盾!