四种机器学习曲线

一、方差、偏差与欠拟合、过拟合概念

        1.方差:描述模型对于给定值的输出稳定性.。(强调个体结果与个体期望的远近)

        2.偏差:描述模型输出结果的期望与样本真实结果的差距。(强调整体结果与期望的远近 )

        3.欠拟合:模型不够复杂或者训练数据过少时,模型均无法捕捉训练数据的基本(或者内在)关                              系,会出现偏差。这样一来,模型一直会错误地预测数据,从而导致准确率降低。                            这种现象称之为模型欠拟合。

        4.过拟合:模型过于复杂或者没有足够的数据支持模型的训练时,模型含有训练集的特有信                              息,对训练集过于依赖,即模型会对训练集高度敏感,这种现象称之为模型过拟合。

         注:高方差->过拟合;高偏差->欠拟合

二、类比靶向图

偏差VS方差

左上角表示(低偏差,低方差),这是最理想的状况;

右上角表示(低偏差,高方差),低偏差导致预测结果与真实结果很近,高方差导致个体预测结果不稳定,比较不集中;

左下角表示(高偏差,低方差),高偏差导致预测结果与真实结果很远,低方差导致个体预测结果稳定,比较集中;

右下角表示(高偏差,高方差),高偏差导致预测结果与真实结果很远,高方差导致个体预测结果不稳定,比较不集中;

三、学习曲线

偏差VS方差

左上角是最优情况,随着样本的增加,train error虽然有一定的增加吗,但是 test error却有很明显的降低;

右上角是最差情况,train error很大,模型并没有从特征中学习到什么,导致test error非常大,模型几乎无法预测数据,需要去寻找数据本身和训练阶段的原因;

左下角是high variance的情况,train error虽然较低,但是模型产生了过拟合,缺乏泛化能力,导致test error很高;

右下角是high bias的情况,train error很高,这时需要去调整模型的参数,减小train error。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容

  • 假设你去随机问很多人一个很复杂的问题,然后把它们的答案合并起来。通常情况下你会发现这个合并的答案比一个专家的答案要...
    城市中迷途小书童阅读 2,495评论 0 1
  • 简书公式支持不太好,欢迎跳转到机器学习深度学习面试题总结GitHub看完整的总结,GitHub总结比较全,大多数是...
    MrMiaow阅读 3,816评论 1 8
  • 一直想找一个地方,可以尽情挥洒自己的泪水。一直想找一个地方,可以肆无忌惮地开怀大笑。一直想找一个地方,可以静...
    林海西阅读 221评论 1 0
  • 我支持学生阅读,支持学生学习语文,因为通过语文学习培育的信心不仅为语文所用,也可为数学所用。
    太阳_92阅读 215评论 0 1
  • 曾经听过一个段子,说一位准妈妈是个发朋友圈狂魔,她生宝宝的时候,全家人在产房外等了三个多小时,好不容易等到大夫出来...
    liuhuanhuan549阅读 249评论 0 0