Ecosystem

1.Tumor ecosystems are comprised of cancer cells, infiltrating immune cells, stromal cells, and other cell types together with non-cellular tissue components.

肿瘤生态系统由癌细胞、浸润免疫细胞、基质细胞和其他细胞类型以及非细胞组织成分组成。

Tumor ecosystems are further shaped by cellular relationships and strategies targeting relationships that promote tumor development hold considerable promise.

肿瘤生态系统进一步受到细胞关系的影响,而以促进肿瘤发展的关系为目标的策略具有相当大的前景。

Each tumor ecosystem was composed of tumor cells with varying phenotypic abnormalities, and tumor cell phenotypes associated with therapy resistance were abundant.

每个肿瘤生态系统都由不同表型异常的肿瘤细胞组成,与治疗耐药相关的肿瘤细胞表型是丰富的。


肿瘤生态系统的概况

Phenotypic Abnormalities and Tumor Individuality Are Linked to Features of Poor Prognosis.

Phenotypic abnormality describes the extent of tumor cell phenotypic deviation from nontumor epithelial cells. ( To describe phenotypic abnormalities, we trained an artificial neural network (autoencoder) (Goodfellow et al., 2016; Hinton and Salakhutdinov, 2006) with multidimensional single-cell data from the juxta-tumoral samples).

Tumor individuality quantifies the similarity of tumors based on cell phenotypes. (To assess the individuality of tumor ecosystems, we applied a graph-based approach to the epithelial cell data from all samples).

Tumor richness represents the number of different co-existing tumor cell phenotypes within an ecosystem. (To explore the concept of tumor richness, we calculated the frequency of each epithelial cell cluster per sample and reported the number of clusters above 1%.).

To identify clusters and cluster combinations with the power to distinguish a given group from all other samples, we employed a random forest classifier.[1]

2.CSCs are active architects of their microenvironment and drive interactions with other tumor components, such as immune cells, cancer-associated fibroblasts and differentiated cells, blood vessels, and other extracellular cues to engineer a sustainable niche. We also highlight considerations for modeling this dynamic tumor ecology and discuss potential therapeutic strategies for targeting these multifaceted interactions.

癌症干细胞是其微环境的活跃构筑者,并驱动与其他肿瘤成分的相互作用,如免疫细胞、癌症相关的成纤维细胞和分化细胞、血管和其他细胞外因素,来打造一个可持续的生态环境。我们还强调了对这种动态肿瘤生态建模的考虑,并讨论了针对这些多方面相互作用的潜在治疗策略。


CSCs evade killing by immune cells through a variety of mechanisms. For example, CD133+ glioblastoma CSCs and ABCB5+ melanoma CSCs downregulate MHC class I molecules (human HLA-A, HLA-B, and HLA-C) to escape from T cell attack. Glioblastoma CSCs also decrease the expression of low molecular weight protein (LMP) and transporter associated with antigen processing (TAP) to reduce the capacity of antigen processing and presenting pathways.

癌症干细胞通过多种机制逃避免疫细胞的杀伤。例如,CD133+胶质母细胞瘤CSCs和ABCB5+黑色素瘤CSCs下调MHC I类分子(人类HLA-A、HLA-B和HLA-C)以逃避T细胞攻击。胶质母细胞瘤CSCs还降低了低分子量蛋白(LMP)和与抗原处理相关的转运体(TAP)的表达,从而降低了抗原处理和呈现途径的能力。[2]

3.Conversely, malignant cells varied within and between tumors in their expression of signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-tomesenchymal transition (p-EMT).

相反,恶性细胞在肿瘤内部和肿瘤之间表达与细胞周期、应激、缺氧、上皮分化和部分上皮-间充质转化(p-EMT)相关的信号有差异。

By integrating single-cell transcriptomes with bulk expression profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal composition, and established p-EMT as an independent predictor of nodal metastasis, grade, and adverse pathologic features.

通过整合数百种肿瘤的单细胞转录组和体表达谱,我们根据其恶性和基质成分对HNSCC亚型进行了提纯,并建立了p-EMT作为淋巴结转移、分级和不良病理特征的独立预测因子。


Single-cell profiles of non-malignant cells highlighted the composition of the TME. We partitioned the 3,363 non-malignant cells to eight main clusters by their expression states (Figures 2A). We annotated clusters by the expression of known marker genes as T-cells, B/plasma cells, macrophages, dendritic cells, mast cells, endothelial cells, fibroblasts, and myocytes.

非恶性细胞的单细胞特征突出了TME的组成。我们将3363个非恶性细胞按其表达状态划分为8个主要簇(图2A)。我们通过已知标记基因t细胞、B/浆细胞、巨噬细胞、树突状细胞、肥大细胞、内皮细胞、成纤维细胞和肌细胞的表达来标记簇。[3]

[1] WAGNER J, RAPSOMANIKI M A, CHEVRIER S, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer [J]. Cell, 2019, 177(5): 1330-45 e18.

[2] PRAGER B C, XIE Q, BAO S, et al. Cancer Stem Cells: The Architects of the Tumor Ecosystem [J]. Cell stem cell, 2019, 24(1): 41-53.

[3] PURAM S V, TIROSH I, PARIKH A S, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer [J]. Cell, 2017, 171(7): 1611-24 e24.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容