数据结构与算法--最短路径之Floyd算法

数据结构与算法--最短路径之Floyd算法

我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的。有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算法,可以这样做:

Dijkstra[] all = new Dijkstra[graph.vertexNum()];
for (int i = 0; i < all.length; i++) {
    all[i] = new Dijkstra(graph, i);
}
for (int s = 0; s < all.length; s++) {
    for (int i = 0; i < graph.vertexNum(); i++) {
        System.out.print(s + " to " + i + ": ");
        System.out.print("(" + all[s].distTo(i) + ") ");
        System.out.println(all[s].pathTo(i));
    }
    System.out.println();
}

其实就是有n个顶点,创建了n个实例对象,每个实例传入了不同的参数而已。我们想要一次性得到任意起点到任意顶点的最短路径集合,可以尝试Floyd算法

解决多源最短路径的Floyd算法

首先,Floyd算法可以处理负权边,但是不能处理负权回路,也就是类似 a -> b -> c ->a,a -> b、b -> c、c -> a三条边的权值和为负数。因为只要我们一直围着这个环兜圈子,就能得到权值和任意小的路径!负权回路会使得最短路径的概念失去意义!

Floyd算法需要两个二维矩阵,因此使用邻接矩阵实现的有向加权图最为方便,不过我一直用邻接表实现的。为此需要将邻接表转换为相应的邻接矩阵。很简单,先将整个二维数组用0和正无穷填充,对角线上权值为0,其余位置正无穷。然后将邻接表中的元素覆盖原数组中对应位置的值,这样邻接表就转换为邻接矩阵了。邻接矩阵在代码中我们用dist[][]表示,这里面存放的就是任意顶点到其他顶点的最短路径!另外需要另外一个二维数组edge[][],像edge[v][w]存放的是v到w的路径中途经的某一个顶点(或叫中转点),具体来说edge[v][w]表示v -> w这条路径上到w的前一个顶点。v -> w途径的顶点可能有多个,都在v那一行即edge[v][i]里找。

算法的精华在下面几行:

if (dist[v][k] + dist[k][w] < dist[v][w]) {
    dist[v][w] = dist[v][k] + dist[k][w];
    edge[v][w] = edge[k][w];
}

其中k是v -> w路径中途径的某一个顶点,判断条件其实和Dijkstra的判断条件如出一辙,即:到底是原来v -> w的路径比较短;还是先由v经过k,再从k到w的这条路径更短,如果是后者,那么需要更新相关数据结构。Floyd依次把图中所有顶点都当做一次中转点,判断任意顶点经过该中转点后,路径会不会变得更短。

先放代码...

package Chap7;

import java.util.LinkedList;
import java.util.List;

public class Floyd {
    private double[][] dist;
    private int[][] edge;

    public Floyd(EdgeWeightedDiGraph<?> graph) {
        dist = new double[graph.vertexNum()][graph.vertexNum()];
        edge = new int[graph.vertexNum()][graph.vertexNum()];
        // 将邻接表变成了邻接矩阵
        for (int i = 0; i < dist.length; i++) {
            for (int j = 0; j < dist.length; j++) {
                // 赋值给
                edge[i][j] = i;
                if (i == j) {
                    dist[i][j] = 0.0;
                } else {
                    dist[i][j] = Double.POSITIVE_INFINITY;
                }
            }
        }

        for (int v = 0; v < graph.vertexNum(); v++) {
            for (DiEdge edge : graph.adj(v)) {
                int w = edge.to();
                dist[v][w] = edge.weight();
            }
        }

        for (int k = 0; k < graph.vertexNum(); k++) {
            for (int v = 0; v < dist.length; v++) {
                for (int w = 0; w < dist.length; w++) {
                    if (dist[v][k] + dist[k][w] < dist[v][w]) {
                        dist[v][w] = dist[v][k] + dist[k][w];
                        edge[v][w] = edge[k][w];
                    }
                }
            }
        }
    }

    public boolean hasPathTo(int s, int v) {
        return dist[s][v] != Double.POSITIVE_INFINITY;
    }

    public Iterable<Integer> pathTo(int s, int v) {
        if (hasPathTo(s, v)) {
            LinkedList<Integer> path = new LinkedList<>();
            for (int i = v; i != s; i = edge[s][i]) {
                path.push(i);
            }
            // 起点要加入
            path.push(s);
            return path;
        }

        return null;
    }

    public double distTo(int s, int w) {
        return dist[s][w];
    }

    public static void main(String[] args) {
        List<String> vertexInfo = List.of("v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
        int[][] edges = {{4, 5}, {5, 4}, {4, 7}, {5, 7}, {7, 5}, {5, 1}, {0, 4}, {0, 2},
                {7, 3}, {1, 3}, {2, 7}, {6, 2}, {3, 6}, {6, 0}, {6, 4}};

        double[] weight = {0.35, 0.35, 0.37, 0.28, 0.28, 0.32, 0.38, 0.26, 0.39, 0.29,
                0.34, 0.40, 0.52, 0.58, 0.93};

        EdgeWeightedDiGraph<String> graph = new EdgeWeightedDiGraph<>(vertexInfo, edges, weight);
        Floyd floyd = new Floyd(graph);
        for (int s = 0; s < graph.vertexNum(); s++) {
            for (int w = 0; w < graph.vertexNum(); w++) {
                System.out.print(s + " to " + w + ": ");
                System.out.print("(" + floyd.distTo(s, w) + ") ");
                System.out.println(floyd.pathTo(s, w));
            }
            System.out.println();
        }
    }
}

关键的地方就是那三个嵌套for循环了,最外层k一定是中转点,第二层是路径的起点v, 第三层是路径的终点w, 它们是这样的关系 v -> k -> w。v -> w途中可能有多个顶点,k可能只是其中一个。k = 0时,对所有经过0的路径,都更新为当前的最短路径,注意是当前,也就是说是暂时的,随着最外层k的循环,dist[][]edge[][]也会不断发生变化;当k = 1时需要用到刚k = 0更新后的dist[][]edge[][]的状态,也就是说每一轮k的循环都是以上一轮为基础的,到最后一次循环结束,对于经过任意顶点的的所有路径都已是最短路径。可以看出这其实是一个动态规划(DP)问题

关于路径的存放edge[][],有两句代码很关键

// 初始化中
edge[i][j] = i;
// if条件中
edge[v][w] = edge[k][w];
  • edge[v][w]存放的是v -> w路径中,终点w的前一个顶点。其实和深度优先和广度优先里用到的edgeTo[]差不多,这里的edge[][]对于任意一条v -> w的路径都是一个树形结构,从终点w开始不断往上找其父结点,最后到根结点(即起点v)处停止。
  • edge[i][j] = i;一开始初始化为起点i的值。意思是i -> j路径中到j的前一个顶点就是i。也就是说我们先假设不经过任何其他顶点的从v到w的直接路径是最短的。在之后的循环中,如果经过其他顶点的i -> j更短就更新;否则就保持默认值。我们将看到,这样初始化在edge[v][w] = edge[k][w]这句中也适用。
[0, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 1, 1, 1, 1, 1, 1]
[2, 2, 2, 2, 2, 2, 2, 2]
[3, 3, 3, 3, 3, 3, 3, 3]
[4, 4, 4, 4, 4, 4, 4, 4]
[5, 5, 5, 5, 5, 5, 5, 5]
[6, 6, 6, 6, 6, 6, 6, 6]
[7, 7, 7, 7, 7, 7, 7, 7]
  • 我们知道v -> k -> w的路径中,v -> k已经是最短路径了,所以只需要更新v -> w,从代码中也可以看出来,我们确实是只对dist[v][w]edge[v][w]操作。但为什么是edge[v][w] = edge[k][w]?现在v -> k -> w这条路径更短,k -> w中到w的前一个顶点也就是v -> w路径中到w的前一个顶点。结合edge[v][w]的定义:存放的是v -> w路径中,w的前一个顶点,可得到edge[v][w] = edge[k][w]。画个图加深理解。

下图是v -> w第一次更新时:k - > w中到w的前一个顶点应该是k,同时它也是v -> w路径中到w的前一个顶点。所以edge[k][w]应该为k。而事实确实是这样的!因为在初始化时候我们是这样做的edge[i][j] = i

edge[v][w] = edge[k][w] = k,这里其实就是用了初始值而已。

再看下图,是若干次更新v -> w时,此时v -> k和k -> w路径中可能有多个顶点,但是edge[k][w]存的始终是终点w的前一个顶点。当v -> w的最短路径更新后,k -> w中到w的前一个顶点就是v -> w路径中到w的前一个顶点。

这就解释了edge[v][w] = edge[k][w]是怎么来的。

最后得到的edge[][]如下:

[0, 5, 0, 7, 0, 4, 3, 2]
[6, 1, 6, 1, 6, 7, 3, 2]
[6, 5, 2, 7, 5, 7, 3, 2]
[6, 5, 6, 3, 6, 7, 3, 2]
[6, 5, 6, 7, 4, 4, 3, 4]
[6, 5, 6, 1, 5, 5, 3, 5]
[6, 5, 6, 7, 6, 7, 6, 2]
[6, 5, 6, 7, 5, 7, 3, 7]

by @sunhaiyu

2017.9.24

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容