【scrapy框架使用】scrapy框架使用

[TOC]
参考文档:
scrapy的使用 :http://python.jobbole.com/86405/
pyc的理解 : http://blog.csdn.net/carolzhang8406/article/details/6342174,
https://www.zhihu.com/question/30296617

1.安装

(因为scrapy 下层非常依赖 twisted,twisted 暂时在py3.0以上还不稳定。所以,python 3.0 以上不能完全兼容,建议使用2.7)

pip install Scrapy

2.创建第一个项目

scrapy startproject firstscrapy(your_project_name)

3.文件说明:

scrapy.cfg  项目的配置信息,主要为Scrapy命令行工具提供一个基础的配置信息。(真正爬虫相关的配置信息在settings.py文件中)
items.py    设置数据存储模板,用于结构化数据,如:Django的Model
pipelines    数据处理行为,如:一般结构化的数据持久化
settings.py 配置文件,如:递归的层数、并发数,延迟下载等
spiders      爬虫目录,如:创建文件,编写爬虫规则
*.pyc   是由py文件经过编译后二进制文件,py文件变成pyc文件后,加载的速度有所提高,而且pyc是一种跨平台的字节码。
是由 python 的虚 拟机来执行的。pyc的内容,是跟python的版本相关的,不同版本编译后的pyc文件是不同的,2.5编译的pyc文件,2.4版本的 python是无法执行的。pyc文件也是可以反编译的,不同版本编译后的pyc文件是不同。
注意:一般创建爬虫文件时,以网站域名命名

4.测试项目

在spiders目录下创建一个新爬虫文件  firstScrapy/spiders/xiaohua_spider.py
创建新文件:xiaohua_spider.py

import scrapy

class XiaoHuarSpider(scrapy.spiders.Spider):
    name = "xiaohuar"
    #1.爬虫文件需要定义一个类,并继承scrapy.spiders.Spider
    #2.必须定义name,即爬虫名,如果没有name,会报错。
    #scrapy crawl xiaohuar --nolog
    #name 的string 必须和 crawl的 name 一致。否者报错
    
    allowed_domains = ["xiaohuar.com"]
    start_urls = [
        "http://www.xiaohuar.com/hua/",
    ]

    def parse(self, response):
        # print(response, type(response))
        # from scrapy.http.response.html import HtmlResponse
        # print(response.body_as_unicode())

        current_url = response.url #爬取时请求的url
        body = response.body  #返回的html
        unicode_body = response.body_as_unicode()#返回的html unicode编码


5.运行

  scrapy crawl xiaohuar --nolog
 格式:scrapy crawl+爬虫名  –nolog即不显示日志



(三个*,在makedown表示下划线)
如果能简单运行,则继续下一步。

6.scrapy查询语法:

和beautifulsoup4 大多数语法还是相通的。

当我们爬取大量的网页,如果自己写正则匹配,会很麻烦,也很浪费时间,令人欣慰的是,scrapy内部支持更简单的查询语法,帮助我们去html中查询我们需要的标签和标签内容以及标签属性。下面逐一进行介绍:
查询子子孙孙中的某个标签(以div标签为例)://div
查询儿子中的某个标签(以div标签为例):/div
查询标签中带有某个class属性的标签://div[@class=’c1′]即子子孙孙中标签是div且class=‘c1’的标签
查询标签中带有某个class=‘c1’并且自定义属性name=‘alex’的标签://div[@class=’c1′][@name=’alex’]
查询某个标签的文本内容://div/span/text() 即查询子子孙孙中div下面的span标签中的文本内容
查询某个属性的值(例如查询a标签的href属性)://a/@href
完整例子:
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,198评论 6 514
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,334评论 3 398
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,643评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,495评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,502评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,156评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,743评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,659评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,200评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,282评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,424评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,107评论 5 349
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,789评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,264评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,390评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,798评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,435评论 2 359

推荐阅读更多精彩内容

  • 这里推荐使用VisualStudioCode, 感觉还不错 本博文将带领你从入门到精通爬虫框架Scrapy,最终具...
    rosekissyou阅读 404评论 0 0
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,693评论 18 139
  • 使用urllib模块爬取图片并下载到本地 python爬虫框架-Scrapy学习自:http://python.j...
    大婶N72阅读 454评论 5 0
  • scrapy学习笔记(有示例版) 我的博客 scrapy学习笔记1.使用scrapy1.1创建工程1.2创建爬虫模...
    陈思煜阅读 12,709评论 4 46
  • 婉仪姐姐,你是从什么时候开始变得坚不可摧,婉仪姐姐我好心疼你,我在你的书里评论,“一个人,不会太孤单了么。。愿你将...
    傅攸宁阅读 246评论 0 0