Description
Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2;
= 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
- You may assume that n is always positive.
- Factors should be greater than 1 and less than n.
**Examples: **
input: 1
output:
[]
input: 37
output:
[]
input: 12
output:
[
[2, 6],
[2, 2, 3],
[3, 4]
]
input: 32
output:
[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]
Solution
DFS
注意不要出现重复解,传入一个start可以轻松解决,保证所有后续分解的因子都不小于start。
class Solution {
public List<List<Integer>> getFactors(int n) {
List<List<Integer>> factors = new ArrayList<>();
getFactorsRecur(n, 2, new ArrayList<>(), factors);
return factors;
}
public void getFactorsRecur(int n, int start, List<Integer> factor
, List<List<Integer>> factors) {
if (n == 1) {
if (factor.size() > 1) { // important
factors.add(new ArrayList<>(factor));
}
return;
}
for (int i = start; i <= n; ++i) {
if (n % i != 0) {
continue;
}
factor.add(i);
getFactorsRecur(n / i, i, factor, factors); // start with i!
factor.remove(factor.size() - 1);
}
}
}