Python深度学习6-迁移学习图像识别实战

1、准备工作

本文将迁移经典模型Resnet进行花的识别,花数据集下载地址https://frenzy86.s3.eu-west-2.amazonaws.com/IFAO/flowers.zip。Resnet使用介绍网址https://keras.io/api/applications/resnet/,可查看一下图像数据的输入大小和维度。
导入所要用的包,解压数据集

from tensorflow.keras.layers import Conv2D,Dense,MaxPool2D,BatchNormalization,GlobalAveragePooling2D
from tensorflow.keras.applications.resnet50 import preprocess_input,decode_predictions
from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img
from tensorflow.keras.optimizers import Adam,Adadelta
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Sequential, Model, load_model
import matplotlib.pyplot as plt
import numpy as np
##pip install splitfolders
import splitfolders

##使用splitfolders对鲜花数据集拆分成训练集和测试集
input_folder = 'flowers/'
output_folder = 'processed_data/'
train_data_dir = 'processed_data/train'
validation_data_dir = 'processed_data/val'
test_data_dir = 'processed_data/test'
splitfolders.ratio(input_folder,output_folder,seed=667,ratio=(.6,.2,.2))

2、使用ImageDataGenerator类进行图像数据集处理


img_height, img_width = (224,224)  ##Resnet所需的输入数据大小
batch_size = 16
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input,
                                    shear_range=0.2,
                                    zoom_range=0.2,
                                    horizontal_flip=True,
                                    validation_split=0.4
                                    )
train_generator = train_datagen.flow_from_directory(
                train_data_dir,
                target_size = (img_height,img_width),
                batch_size = batch_size,
                class_mode = 'categorical',
                subset='training')   # 训练集

valid_generator = train_datagen.flow_from_directory(
                validation_data_dir,
                target_size = (img_height,img_width),
                batch_size = batch_size,
                class_mode = 'categorical',
                subset='validation')  # 验证集

test_generator = train_datagen.flow_from_directory(
                test_data_dir,
                target_size = (img_height,img_width),
                batch_size = 1,
                class_mode = 'categorical',
                subset='validation')  # 测试集

3、调用Resnet进行模型训练

##训练标签数据
X,y = test_generator.next()
base_model = ResNet50(include_top=False,weights='imagenet')
X = base_model.output
X = GlobalAveragePooling2D()(X)
X = Dense(1024, activation='relu')(X)
###num_classes 多少类别 5个
predictions = Dense(train_generator.num_classes, activation='softmax')(X)
model = Model(inputs=base_model.input,outputs=predictions)
model.compile(optimizer=Adam(lr=0.0001),loss='categorical_crossentropy',metrics = ['accuracy'])
history = model.fit(train_generator, 
                    epochs=10,
                    shuffle = True,
                    validation_data=valid_generator,
                    #validation_steps=2,
                    )

4、模型的保存验证测试

model.save('ResNet50_flowers.h5')
test_loss, test_acc = model.evaluate(test_generator, verbose=2)
print('\nTest accuracy ', test_acc)

import pandas as pd
import seaborn as sns
model = load_model('ResNet50_flowers.h5')
filenames = test_generator.filenames
nb_samples = len(test_generator)

y_prob =[]
y_act = []
test_generator.reset()

for _ in range (nb_samples):
    X_test,y_test = test_generator.next()
    y_prob.append(model.predict(X_test))
    y_act.append(y_test)

predicted_class = [list(test_generator.class_indices.keys())[i.argmax()] for i in y_prob]
actual_class = [list(test_generator.class_indices.keys())[i.argmax()] for i in y_act]

test_df = pd.DataFrame(np.vstack([predicted_class,actual_class]).T, 
                        columns=['predicted_class','actual_class'])
测试集中模型识别结果和实际结果

5 、测试新图片

测试图片下载地址https://frenzy86.s3.eu-west-2.amazonaws.com/IFAO/test_images.zip


import os
lista = os.listdir('test_images/') #['rose.jpg', 'sunflower.jpg', 'dandelion.jpg', 'tulip.jpg', 'daisy.jpg']

# {'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}
classes = {0:"daisy",
           1:"dandelion",
           2:"rose",
           3:"sunflower",
           4:"tulip",          
           }

finale=[]
name = []
res = []
for i in lista:
    path = 'test_images/' + i
    img = image.load_img(path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    images = np.vstack([x])
    pred = model.predict(images, batch_size=10)
    print(pred)
    result = np.argmax(pred, axis=-1)[0]
    print(result)
    name.append(i)
    finale.append(result)
    res.append(classes[result])

finale
print(name)
print(res)

完整代码如下

from tensorflow.keras.layers import Conv2D,Dense,MaxPool2D,BatchNormalization,GlobalAveragePooling2D
from tensorflow.keras.applications.resnet50 import preprocess_input,decode_predictions
from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img
from tensorflow.keras.optimizers import Adam,Adadelta
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Sequential, Model, load_model
import matplotlib.pyplot as plt
import numpy as np
##pip install splitfolders
import splitfolders

##使用splitfolders对鲜花数据集拆分成训练集和测试集
input_folder = 'flowers/'
output_folder = 'processed_data/'
train_data_dir = 'processed_data/train'
validation_data_dir = 'processed_data/val'
test_data_dir = 'processed_data/test'
splitfolders.ratio(input_folder,output_folder,seed=667,ratio=(.6,.2,.2))

img_height, img_width = (224,224)  ##Resnet所需的输入数据大小
batch_size = 16
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input,
                                    shear_range=0.2,
                                    zoom_range=0.2,
                                    horizontal_flip=True,
                                    validation_split=0.4
                                    )
train_generator = train_datagen.flow_from_directory(
                train_data_dir,
                target_size = (img_height,img_width),
                batch_size = batch_size,
                class_mode = 'categorical',
                subset='training')   # 训练集

valid_generator = train_datagen.flow_from_directory(
                validation_data_dir,
                target_size = (img_height,img_width),
                batch_size = batch_size,
                class_mode = 'categorical',
                subset='validation')  # 验证集

test_generator = train_datagen.flow_from_directory(
                test_data_dir,
                target_size = (img_height,img_width),
                batch_size = 1,
                class_mode = 'categorical',
                subset='validation')  # 测试集

X,y = test_generator.next()
base_model = ResNet50(include_top=False,weights='imagenet')
X = base_model.output
X = GlobalAveragePooling2D()(X)
X = Dense(1024, activation='relu')(X)
predictions = Dense(train_generator.num_classes, activation='softmax')(X)
model = Model(inputs=base_model.input,outputs=predictions)
model.compile(optimizer=Adam(lr=0.0001),loss='categorical_crossentropy',metrics = ['accuracy'])
history = model.fit(train_generator, 
                    epochs=10,
                    shuffle = True,
                    validation_data=valid_generator,
                    #validation_steps=2,
                    )

model.save('ResNet50_flowers.h5')
test_loss, test_acc = model.evaluate(test_generator, verbose=2)
print('\nTest accuracy ', test_acc)

import pandas as pd
import seaborn as sns
model = load_model('ResNet50_flowers.h5')
filenames = test_generator.filenames
nb_samples = len(test_generator)

y_prob =[]
y_act = []
test_generator.reset()

for _ in range (nb_samples):
    X_test,y_test = test_generator.next()
    y_prob.append(model.predict(X_test))
    y_act.append(y_test)

predicted_class = [list(test_generator.class_indices.keys())[i.argmax()] for i in y_prob]
actual_class = [list(test_generator.class_indices.keys())[i.argmax()] for i in y_act]

test_df = pd.DataFrame(np.vstack([predicted_class,actual_class]).T, 
                        columns=['predicted_class','actual_class'])

import os
lista = os.listdir('test_images/') #['rose.jpg', 'sunflower.jpg', 'dandelion.jpg', 'tulip.jpg', 'daisy.jpg']

# {'daisy': 0, 'dandelion': 1, 'rose': 2, 'sunflower': 3, 'tulip': 4}
classes = {0:"daisy",
           1:"dandelion",
           2:"rose",
           3:"sunflower",
           4:"tulip",          
           }

finale=[]   
name = []
res = []
for i in lista:
    path = 'test_images/' + i
    img = image.load_img(path, target_size=(224, 224))
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    images = np.vstack([x])
    pred = model.predict(images, batch_size=10)
    print(pred)
    result = np.argmax(pred, axis=-1)[0]
    print(result)
    name.append(i)
    finale.append(result)
    res.append(classes[result])

finale
print(name)
print(res)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容